import init, { Model } from "./build/m.js"; async function fetchArrayBuffer(url, cacheModel = true) { if (!cacheModel) return new Uint8Array(await (await fetch(url)).arrayBuffer()); const cacheName = "moondream-candle-cache"; const cache = await caches.open(cacheName); const cachedResponse = await cache.match(url); if (cachedResponse) { const data = await cachedResponse.arrayBuffer(); return new Uint8Array(data); } const res = await fetch(url, { cache: "force-cache" }); cache.put(url, res.clone()); return new Uint8Array(await res.arrayBuffer()); } async function concatenateArrayBuffers(urls) { const arrayBuffers = await Promise.all( urls.map((url) => fetchArrayBuffer(url)) ); let totalLength = arrayBuffers.reduce( (acc, arrayBuffer) => acc + arrayBuffer.byteLength, 0 ); let concatenatedBuffer = new Uint8Array(totalLength); let offset = 0; arrayBuffers.forEach((buffer) => { concatenatedBuffer.set(new Uint8Array(buffer), offset); offset += buffer.byteLength; }); return concatenatedBuffer; } class Moondream { static imageArrayHash = {}; static instance = {}; static currentModelID = null; static async getInstance(weightsURL, modelID, tokenizerURL, quantized) { // load individual modelID only once if (!this.instance[modelID]) { await init(); self.postMessage({ status: "loading", message: "Loading Model" }); const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([ weightsURL instanceof Array ? concatenateArrayBuffers(weightsURL) : fetchArrayBuffer(weightsURL), fetchArrayBuffer(tokenizerURL), ]); this.instance[modelID] = new Model( weightsArrayU8, tokenizerArrayU8, quantized ); } this.currentModelID = modelID; return this.instance[modelID]; } // Remove the modelID parameter from setImageEmbeddings static setImageEmbeddings(imageArrayU8) { // check if image embeddings are already set for this image and model const imageArrayHash = this.getSimpleHash(imageArrayU8); if ( this.imageArrayHash[this.currentModelID] === imageArrayHash && this.instance[this.currentModelID] ) { self.postMessage({ status: "embedding", message: "Embeddings Already Set", }); return; } this.imageArrayHash[this.currentModelID] = imageArrayHash; this.instance[this.currentModelID].set_image_embeddings(imageArrayU8); self.postMessage({ status: "embedding", message: "Embeddings Set" }); } static getSimpleHash(imageArrayU8) { // get simple hash of imageArrayU8 let imageArrayHash = 0; for (let i = 0; i < imageArrayU8.length; i += 100) { imageArrayHash ^= imageArrayU8[i]; } return imageArrayHash.toString(16); } } let controller = null; self.addEventListener("message", (event) => { if (event.data.command === "start") { controller = new AbortController(); generate(event.data); } else if (event.data.command === "abort") { controller.abort(); } }); async function generate(data) { const { weightsURL, modelID, tokenizerURL, quantized, imageURL, prompt, seed, temp, top_p, repeatPenalty, maxSeqLen, verbose_prompt, } = data; try { self.postMessage({ status: "loading", message: "Starting Moondream" }); const model = await Moondream.getInstance( weightsURL, modelID, tokenizerURL, quantized ); self.postMessage({ status: "loading", message: "Initializing model" }); self.postMessage({ status: "loading", message: "Loading Image" }); const imageArrayU8 = await fetchArrayBuffer(imageURL, false); self.postMessage({ status: "embedding", message: "Creating Embeddings" }); Moondream.setImageEmbeddings(imageArrayU8); self.postMessage({ status: "complete-embedding", message: "Embeddings Complete", }); const { token, token_id } = model.init_with_image_prompt({ prompt, seed: BigInt(seed), temp: parseFloat(temp), top_p: parseFloat(top_p), repeat_penalty: parseFloat(repeatPenalty), repeat_last_n: 64, verbose_prompt, }); const seq_len = 2048; let sentence = token; let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; let startTime = performance.now(); let tokensCount = 0; while (tokensCount < maxTokens) { await new Promise(async (resolve) => { if (controller && controller.signal.aborted) { console.log("Aborted"); self.postMessage({ status: "aborted", message: "Aborted", output: prompt + sentence, }); return; } const { token, token_id } = await model.next_token(); if (token_id === 50256) { // <|endoftext|> self.postMessage({ status: "complete", message: "complete", output: prompt + sentence, }); return; } const tokensSec = ((tokensCount + 1) / (performance.now() - startTime)) * 1000; sentence += token; self.postMessage({ status: "generating", message: "Generating token", token: token, sentence: sentence, totalTime: performance.now() - startTime, tokensSec, prompt: prompt, }); setTimeout(resolve, 0); }); tokensCount++; } self.postMessage({ status: "complete", message: "complete", output: prompt + sentence, }); } catch (e) { self.postMessage({ error: e }); } }