import streamlit as st import pandas as pd import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix class Decision_tree_st: def __init__(self, database, test_size=0.2): self.database = database self.test_size = test_size self.desc = r''' # **Decision Tree** **Entropy** $$ E = - \sum p(X) \cdot log_{2}(p(X)) $$ $$ p(X) = \frac{len(x)}{n} $$ **Ganancia de información** $$ IG = E(parent) - [weight \quad average] \cdot E(children) $$ **Método (para construir el árbol)** - Se comienza desde el primer nodo y para cada se selecciona la mejor separación en base a la ganancia de información. - De la ganancia de información más alta se rescata la variable y el límite. - Luego se aplica la segmentación a cada nodo, en base a la variable y limite encontrado. - Se itera con estos pasos hasta cumplirse algún criterio - **maximium depth**: cantidad de nodos máximos al final - **minimum samples**: cantidad mínima de elementos que puede tener los nodos - **no more class distribution**: No existen más elementos para segmentar **Aproximación (predicción)** - Se sigue las segmentaciones en el orden del árbol (de arriba a abajo) - Cuando se llega a un nodo al final del árbol se predice según el valor más común en esa muestra. ''' self.max_depth = 100 self.min_samples_split = 2 self.stop_criterion = 'max_depth' def params(self): self.stop_criterion = st.radio('Criterio de termino:', options=['max_depth', 'min_samples_split']) if self.stop_criterion == 'max_depth': self.max_depth = st.slider('Valor max deph:', 1, 100, 10) elif self.stop_criterion == 'min_samples_split': self.min_samples_split = st.slider('Valor min_samples_split:', 2, 1000, 5) def solve(self): self.X, self.y = self.database.data, self.database.target X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234) if self.stop_criterion == 'max_depth': self.sklearn_clf = DecisionTreeClassifier(max_depth=self.max_depth, random_state=1234) elif self.stop_criterion == 'min_samples_split': self.sklearn_clf = DecisionTreeClassifier(min_samples_split=self.min_samples_split, random_state=1234) self.sklearn_clf.fit(X_train, y_train) y_pred = self.sklearn_clf.predict(X_test) acc = accuracy_score(y_pred, y_test) c1, c2 = st.columns([4, 1]) c2.metric('Acierto', value=f'{np.round(acc, 2)*100}%') df = pd.DataFrame(confusion_matrix(y_pred, y_test)) labels = self.database.target_names df.columns = labels df.index = labels c1.write('**Confusion Matrix**') c1.dataframe(df) def visualization(self): n_features = int(self.database.data.shape[1]) self.x_feature = st.slider('Variables en eje x', 1, n_features, 1) self.y_feature = st.slider('Variables en eje y', 1, n_features, 2) self.X = np.c_[self.database.data[:, self.x_feature-1:self.x_feature], self.database.data[:, self.y_feature-1:self.y_feature]] self.y = self.database.target X_train, X_test, y_train, y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=1234) if self.stop_criterion == 'max_depth': self.sklearn_clf = DecisionTreeClassifier(max_depth=self.max_depth, random_state=1234) elif self.stop_criterion == 'min_samples_split': self.sklearn_clf = DecisionTreeClassifier(min_samples_split=self.min_samples_split, random_state=1234) self.sklearn_clf.fit(X_train, y_train) x1_min, x1_max = self.X[:, 0].min() - 0.5, self.X[:, 0].max() + 0.5 x2_min, x2_max = self.X[:, 1].min() - 0.5, self.X[:, 1].max() + 0.5 h = 0.02 # Salto que vamos dando x1_i = np.arange(x1_min, x1_max, h) x2_i = np.arange(x2_min, x2_max, h) x1_x1, x2_x2 = np.meshgrid(x1_i, x2_i) y_pred = self.sklearn_clf.predict(np.c_[x1_x1.ravel(), x2_x2.ravel()]) y_pred = y_pred.reshape(x1_x1.shape) plt.figure(1, figsize=(12, 8)) plt.pcolormesh(x1_x1, x2_x2, y_pred, cmap=plt.cm.Paired) plt.scatter(self.X[:, 0], self.X[:, 1], c=self.y, edgecolors='k', cmap=plt.cm.Paired) plt.xlim(x1_x1.min(), x1_x1.max()) plt.ylim(x2_x2.min(), x2_x2.max()) return plt.gcf()