# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py import torch import torch.nn as nn import torch.nn.functional as F # Global Variable global_concept_mask = [] attn_mask_logs = {} text_attn_map_logs = {} image_attn_map_logs = {} class AttnProcessor(nn.Module): r""" Default processor for performing attention-related computations. """ def __init__( self, hidden_size=None, cross_attention_dim=None, ): super().__init__() def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAttnProcessor(nn.Module): r""" Attention processor for IP-Adapater. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.to_k_ip = nn.Linear( cross_attention_dim or hidden_size, hidden_size, bias=False ) self.to_v_ip = nn.Linear( cross_attention_dim or hidden_size, hidden_size, bias=False ) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): global global_concept_mask global attn_mask_logs global text_attn_map_logs global image_attn_map_logs residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # for ip-adapter ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) self.attn_map = ip_attention_probs ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class ConceptrolAttnProcessor(nn.Module): r""" Attention processor for IP-Adapater. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__( self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, textual_concept_idxs=None, name=None, global_masking=False, adaptive_scale_mask=False, concept_mask_layer=None, ): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.textual_concept_idxs = textual_concept_idxs self.name = name self.to_k_ip = nn.Linear( cross_attention_dim or hidden_size, hidden_size, bias=False ) self.to_v_ip = nn.Linear( cross_attention_dim or hidden_size, hidden_size, bias=False ) self.global_masking = global_masking self.adaptive_scale_mask = adaptive_scale_mask if concept_mask_layer is None: concept_mask_layer = [ "mid_block.attentions.0.transformer_blocks.0.attn2.processor" ] # For SD print("Warning: Using default concept mask layer for SD. For SDXL, use 'up_blocks.0.attentions.1.transformer_blocks.5.attn2.processor'") # concept_mask_layer = ['up_blocks.0.attentions.1.transformer_blocks.1.attn2.processor'] # For SDXL self.concept_mask_layer = concept_mask_layer def set_global_view(self, attn_procs): self.attn_procs = attn_procs # print(self.name, self.attn_procs.keys()) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): global global_concept_mask global attn_mask_logs if self.textual_concept_idxs is None: raise ValueError( "textual_concept_idxs should be provided for ConceptrolAttnProcessor" ) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = 77 # Both SD and SDXL use 77 as length of text tokens encoder_hidden_states, ip_hidden_states_cat = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) num_concepts = ip_hidden_states_cat.shape[1] // self.num_tokens ip_hidden_states_list = torch.chunk( ip_hidden_states_cat, num_concepts, dim=1 ) assert len(ip_hidden_states_list) == len( self.textual_concept_idxs ), f"register_idxs should have the same length as the number of concepts, but got {len(ip_hidden_states_list)} and {len(self.textual_concept_idxs)}" if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) # [16, 4096, 40] key = attn.head_to_batch_dim(key) # [16, 77, 40] value = attn.head_to_batch_dim(value) # [16, 77, 40] attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) concept_mask_layer = self.concept_mask_layer if len(global_concept_mask) == 0: global_concept_mask = [None for _ in range(len(self.textual_concept_idxs))] for i in range(len(self.textual_concept_idxs)): ip_hidden_states = ip_hidden_states_list[i] textual_concept_start_idx, textual_concept_end_idx = ( self.textual_concept_idxs[i] ) ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key) # [16, 4, 40] ip_value = attn.head_to_batch_dim(ip_value) # [16, 4, 40] # attention_probs: [20/40, 4096, 77] ip_attention_mask = attention_probs[ :, :, textual_concept_start_idx:textual_concept_end_idx ] # [16, 4096, T] ip_attention_mask = torch.mean( ip_attention_mask, dim=-1, keepdim=True ) # [16, 4096, 1] ip_attention_mask = attn.batch_to_head_dim( ip_attention_mask ) # [2, 4096, 8] ip_attention_mask = torch.mean( ip_attention_mask, dim=-1, keepdim=True ) # [2, 4096, 1] ip_attention_mask = ip_attention_mask / ( torch.amax(ip_attention_mask, dim=-2, keepdim=True) + 1e-6 ) ip_attention_mask = ip_attention_mask[1:2] # (use the classifier one) # Visualization if self.name not in attn_mask_logs: attn_mask_logs[self.name] = [] text_attn_map_logs[self.name] = [] image_attn_map_logs[self.name] = [] attn_mask_logs[self.name].append( ip_attention_mask.detach().cpu().numpy()[0, :, 0] ) text_attn_map_logs[self.name].append( ip_attention_mask.detach().cpu().numpy()[0, :, 0] ) if self.global_masking and ( self.name == concept_mask_layer[0] ): global_concept_mask[i] = ip_attention_mask if ( self.global_masking and self.name != concept_mask_layer[0] and global_concept_mask[i] is not None ): original_dim = int(global_concept_mask[i].shape[1] ** 0.5) target_dim = int(hidden_states.shape[1] ** 0.5) global_concept_mask_2d = global_concept_mask[i].view( global_concept_mask[i].shape[0], 1, original_dim, original_dim ) resized_global_concept_mask_2d = F.interpolate( global_concept_mask_2d, size=(target_dim, target_dim), mode="nearest", ) resized_global_concept_mask = resized_global_concept_mask_2d.view( global_concept_mask[i].shape[0], -1, 1 ) ip_attention_mask = resized_global_concept_mask ip_attention_probs = attn.get_attention_scores( query, ip_key, None ) # [16, 4096, 4] # Visualization ip_attention_map = attention_probs[:, :, 15:16] # [16, 4096, T] ip_attention_map = torch.mean( ip_attention_map, dim=-1, keepdim=True ) # [16, 4096, 1] ip_attention_map = torch.mean( ip_attention_map, dim=-1, keepdim=True ) # [16, 4096, 1] ip_attention_map = attn.batch_to_head_dim(ip_attention_map) # [2, 4096, 8] ip_attention_map = torch.mean( ip_attention_map, dim=-1, keepdim=True ) # [2, 4096, 1] ip_attention_map = ip_attention_map / ( torch.amax(ip_attention_map, dim=-2, keepdim=True) + 1e-6 ) ip_attention_map = ip_attention_map[1:2] # (use the classifier one) image_attn_map_logs[self.name].append( ip_attention_map.detach().cpu().numpy()[0, :, 0] ) ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) # [16, 4096, 40] ip_hidden_states = attn.batch_to_head_dim( ip_hidden_states ) # [2, 4096, 320] ip_hidden_states = ip_hidden_states * ip_attention_mask if self.adaptive_scale_mask: raise ValueError("adaptive_scale_mask is deprecated already") hidden_states += self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__( self, hidden_size=None, cross_attention_dim=None, ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): The context length of the image features. """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.num_tokens = num_tokens self.to_k_ip = nn.Linear( cross_attention_dim or hidden_size, hidden_size, bias=False ) self.to_v_ip = nn.Linear( cross_attention_dim or hidden_size, hidden_size, bias=False ) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: # get encoder_hidden_states, ip_hidden_states end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :], ) if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # for ip-adapter ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) with torch.no_grad(): self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) # print(self.attn_map.shape) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states ## for controlnet class CNAttnProcessor: r""" Default processor for performing attention-related computations. """ def __init__(self, num_tokens=4): self.num_tokens = num_tokens def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class CNAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, num_tokens=4): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.num_tokens = num_tokens def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states else: end_pos = encoder_hidden_states.shape[1] - self.num_tokens encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states