import cv2 import numpy as np import MBD_utils import torch import torch.nn.functional as F def mask_base_dewarper(image,mask): ''' input: image -> ndarray HxWx3 uint8 mask -> ndarray HxW uint8 return dewarped -> ndarray HxWx3 uint8 grid (optional) -> ndarray HxWx2 -1~1 ''' ## get contours # _, contours, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) ## cv2.__version__ == 3.x contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_SIMPLE) ## cv2.__version__ == 4.x ## get biggest contours and four corners based on Douglas-Peucker algorithm four_corners, maxArea, contour= MBD_utils.DP_algorithm(contours) four_corners = MBD_utils.reorder(four_corners) ## reserve biggest contours and remove other noisy contours new_mask = np.zeros_like(mask) new_mask = cv2.drawContours(new_mask,[contour],-1,255,cv2.FILLED) ## obtain middle points # ratios = [0.25,0.5,0.75] # ratios = [0.125,0.25,0.375,0.5,0.625,0.75,0.875] ratios = [0.25,0.5,0.75] # ratios = [0.0625,0.125,0.1875,0.25,0.3125,0.375,0.4475,0.5,0.5625,0.625,0.06875,0.75,0.8125,0.875,0.9375] middle = MBD_utils.findMiddle(corners=four_corners,mask=new_mask,points=ratios) ## all points source_points = np.concatenate((four_corners,middle),axis=0) ## all_point = four_corners(topleft,topright,bottom)+top+bottom+left+right ## target points h,w = image.shape[:2] padding = 0 target_points = [[padding, padding],[w-padding, padding], [padding, h-padding],[w-padding, h-padding]] for ratio in ratios: target_points.append([int((w-2*padding)*ratio)+padding,padding]) for ratio in ratios: target_points.append([int((w-2*padding)*ratio)+padding,h-padding]) for ratio in ratios: target_points.append([padding,int((h-2*padding)*ratio)+padding]) for ratio in ratios: target_points.append([w-padding,int((h-2*padding)*ratio)+padding]) ## dewarp base on cv2 # pts1 = np.float32(source_points) # pts2 = np.float32(target_points) # tps = cv2.createThinPlateSplineShapeTransformer() # matches = [] # N = pts1.shape[0] # for i in range(0,N): # matches.append(cv2.DMatch(i,i,0)) # pts1 = pts1.reshape(1,-1,2) # pts2 = pts2.reshape(1,-1,2) # tps.estimateTransformation(pts2,pts1,matches) # dewarped = tps.warpImage(image) ## dewarp base on generated grid source_points = source_points.reshape(-1,2)/np.array([image.shape[:2][::-1]]).reshape(1,2) source_points = torch.from_numpy(source_points).float().cuda() source_points = source_points.unsqueeze(0) source_points = (source_points-0.5)*2 target_points = np.asarray(target_points).reshape(-1,2)/np.array([image.shape[:2][::-1]]).reshape(1,2) target_points = torch.from_numpy(target_points).float() target_points = (target_points-0.5)*2 model = MBD_utils.TPSGridGen(target_height=256,target_width=256,target_control_points=target_points) model = model.cuda() grid = model(source_points).view(-1,256,256,2).permute(0,3,1,2) grid = F.interpolate(grid,(h,w),mode='bilinear').permute(0,2,3,1) dewarped = MBD_utils.torch2cvimg(F.grid_sample(MBD_utils.cvimg2torch(image).cuda(),grid))[0] return dewarped,grid[0].cpu().numpy() def mask_base_cropper(image,mask): ''' input: image -> ndarray HxWx3 uint8 mask -> ndarray HxW uint8 return dewarped -> ndarray HxWx3 uint8 grid (optional) -> ndarray HxWx2 -1~1 ''' ## get contours _, contours, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) ## cv2.__version__ == 3.x # contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_SIMPLE) ## cv2.__version__ == 4.x ## get biggest contours and four corners based on Douglas-Peucker algorithm four_corners, maxArea, contour= MBD_utils.DP_algorithm(contours) four_corners = MBD_utils.reorder(four_corners) ## reserve biggest contours and remove other noisy contours new_mask = np.zeros_like(mask) new_mask = cv2.drawContours(new_mask,[contour],-1,255,cv2.FILLED) ## 最小外接矩形 rect = cv2.minAreaRect(contour) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度) box = cv2.boxPoints(rect) # cv2.boxPoints(rect) for OpenCV 3.x 获取最小外接矩形的4个顶点坐标 box = np.int0(box) box = box.reshape((4,1,2))