import cv2 # importing required libraries import numpy as np import cv2 from skimage.filters import threshold_sauvola import glob from tqdm import tqdm import os from skimage import io def SauvolaModBinarization(image,n1=51,n2=51,k1=0.3,k2=0.3,default=True): ''' Binarization using Sauvola's algorithm @name : SauvolaModBinarization parameters @param image (numpy array of shape (3/1) of type np.uint8): color or gray scale image optional parameters @param n1 (int) : window size for running sauvola during the first pass @param n2 (int): window size for running sauvola during the second pass @param k1 (float): k value corresponding to sauvola during the first pass @param k2 (float): k value corresponding to sauvola during the second pass @param default (bool) : bollean variable to set the above parameter as default. @param default is set to True : thus default values of the above optional parameters (n1,n2,k1,k2) are set to n1 = 5 % of min(image height, image width) n2 = 10 % of min(image height, image width) k1 = 0.5 k2 = 0.5 Returns @return A binary image of same size as @param image @cite https://drive.google.com/file/d/1D3CyI5vtodPJeZaD2UV5wdcaIMtkBbdZ/view?usp=sharing ''' if(default): n1 = int(0.05*min(image.shape[0],image.shape[1])) if (n1%2==0): n1 = n1+1 n2 = int(0.1*min(image.shape[0],image.shape[1])) if (n2%2==0): n2 = n2+1 k1 = 0.5 k2 = 0.5 if(image.ndim==3): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray = np.copy(image) T1 = threshold_sauvola(gray, window_size=n1,k=k1) max_val = np.amax(gray) min_val = np.amin(gray) C = np.copy(T1) C = C.astype(np.float32) C[gray > T1] = (gray[gray > T1] - T1[gray > T1])/(max_val - T1[gray > T1]) C[gray <= T1] = 0 C = C * 255.0 new_in = np.copy(C.astype(np.uint8)) T2 = threshold_sauvola(new_in, window_size=n2,k=k2) binary = np.copy(gray) binary[new_in <= T2] = 0 binary[new_in > T2] = 255 return binary,T2 def dtprompt(img): x = cv2.Sobel(img,cv2.CV_16S,1,0) y = cv2.Sobel(img,cv2.CV_16S,0,1) absX = cv2.convertScaleAbs(x) # 转回uint8 absY = cv2.convertScaleAbs(y) high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0) high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY) return high_frequency im_paths = glob.glob('imgs/*') for im_path in tqdm(im_paths): if '_bin.' in im_path: continue if '_thr.' in im_path: continue if '_gradient.' in im_path: continue im = cv2.imread(im_path) result,thresh = SauvolaModBinarization(im) gradient = dtprompt(im) thresh = thresh.astype(np.uint8) cv2.imwrite(im_path.replace('.','_bin.'),result) cv2.imwrite(im_path.replace('.','_thr.'),thresh) cv2.imwrite(im_path.replace('.','_gradient.'),gradient)