import cv2 import numpy as np import copy import torch import torch import itertools import torch.nn as nn from torch.autograd import Function, Variable def reorder(myPoints): myPoints = myPoints.reshape((4, 2)) myPointsNew = np.zeros((4, 1, 2), dtype=np.int32) add = myPoints.sum(1) myPointsNew[0] = myPoints[np.argmin(add)] myPointsNew[3] =myPoints[np.argmax(add)] diff = np.diff(myPoints, axis=1) myPointsNew[1] =myPoints[np.argmin(diff)] myPointsNew[2] = myPoints[np.argmax(diff)] return myPointsNew def findMiddle(corners,mask,points=[0.25,0.5,0.75]): num_middle_points = len(points) top = [np.array([])]*num_middle_points bottom = [np.array([])]*num_middle_points left = [np.array([])]*num_middle_points right = [np.array([])]*num_middle_points center_top = [] center_bottom = [] center_left = [] center_right = [] center = (int((corners[0][0][1]+corners[3][0][1])/2),int((corners[0][0][0]+corners[3][0][0])/2)) for ratio in points: center_top.append( (center[0],int(corners[0][0][0]*(1-ratio)+corners[1][0][0]*ratio)) ) center_bottom.append( (center[0],int(corners[2][0][0]*(1-ratio)+corners[3][0][0]*ratio)) ) center_left.append( (int(corners[0][0][1]*(1-ratio)+corners[2][0][1]*ratio),center[1]) ) center_right.append( (int(corners[1][0][1]*(1-ratio)+corners[3][0][1]*ratio),center[1]) ) for i in range(0,center[0],1): for j in range(num_middle_points): if top[j].size==0: if mask[i,center_top[j][1]]==255: top[j] = np.asarray([center_top[j][1],i]) top[j] = top[j].reshape(1,2) for i in range(mask.shape[0]-1,center[0],-1): for j in range(num_middle_points): if bottom[j].size==0: if mask[i,center_bottom[j][1]]==255: bottom[j] = np.asarray([center_bottom[j][1],i]) bottom[j] = bottom[j].reshape(1,2) for i in range(mask.shape[1]-1,center[1],-1): for j in range(num_middle_points): if right[j].size==0: if mask[center_right[j][0],i]==255: right[j] = np.asarray([i,center_right[j][0]]) right[j] = right[j].reshape(1,2) for i in range(0,center[1]): for j in range(num_middle_points): if left[j].size==0: if mask[center_left[j][0],i]==255: left[j] = np.asarray([i,center_left[j][0]]) left[j] = left[j].reshape(1,2) return np.asarray(top+bottom+left+right) def DP_algorithmv1(contours): biggest = np.array([]) max_area = 0 step = 0.001 count = 0 # while biggest.size==0: while True: for i in contours: # print(i.shape) area = cv2.contourArea(i) # print(area,cv2.arcLength(i, True)) if area > cv2.arcLength(i, True)*10: peri = cv2.arcLength(i, True) approx = cv2.approxPolyDP(i, (0.01+step*count) * peri, True) if area > max_area and len(approx) == 4: max_area = area biggest_contours = i biggest = approx break if abs(max_area - cv2.contourArea(biggest))/max_area > 0.3: biggest = np.array([]) count += 1 if count > 200: break temp = biggest[0] return biggest,max_area, biggest_contours def DP_algorithm(contours): biggest = np.array([]) max_area = 0 step = 0.001 count = 0 ### largest contours for i in contours: area = cv2.contourArea(i) if area > max_area: max_area = area biggest_contours = i peri = cv2.arcLength(biggest_contours, True) ### find four corners while True: approx = cv2.approxPolyDP(biggest_contours, (0.01+step*count) * peri, True) if len(approx) == 4: biggest = approx break # if abs(max_area - cv2.contourArea(biggest))/max_area > 0.2: # if abs(max_area - cv2.contourArea(biggest))/max_area > 0.4: # biggest = np.array([]) count += 1 if count > 200: break return biggest,max_area, biggest_contours def drawRectangle(img,biggest,color,thickness): cv2.line(img, (biggest[0][0][0], biggest[0][0][1]), (biggest[1][0][0], biggest[1][0][1]), color, thickness) cv2.line(img, (biggest[0][0][0], biggest[0][0][1]), (biggest[2][0][0], biggest[2][0][1]), color, thickness) cv2.line(img, (biggest[3][0][0], biggest[3][0][1]), (biggest[2][0][0], biggest[2][0][1]), color, thickness) cv2.line(img, (biggest[3][0][0], biggest[3][0][1]), (biggest[1][0][0], biggest[1][0][1]), color, thickness) return img def minAreaRect(contours,img): # biggest = np.array([]) max_area = 0 for i in contours: area = cv2.contourArea(i) if area > max_area: peri = cv2.arcLength(i, True) rect = cv2.minAreaRect(i) points = cv2.boxPoints(rect) max_area = area return points def cropRectangle(img,biggest): # print(biggest) w = np.abs(biggest[0][0][0] - biggest[1][0][0]) h = np.abs(biggest[0][0][1] - biggest[2][0][1]) new_img = np.zeros((w,h,img.shape[-1]),dtype=np.uint8) new_img = img[biggest[0][0][1]:biggest[0][0][1]+h,biggest[0][0][0]:biggest[0][0][0]+w] return new_img def cvimg2torch(img,min=0,max=1): ''' input: im -> ndarray uint8 HxWxC return tensor -> torch.tensor BxCxHxW ''' if len(img.shape)==2: img = np.expand_dims(img,axis=-1) img = img.astype(float) / 255.0 img = img.transpose(2, 0, 1) # NHWC -> NCHW img = np.expand_dims(img, 0) img = torch.from_numpy(img).float() return img def torch2cvimg(tensor,min=0,max=1): ''' input: tensor -> torch.tensor BxCxHxW C can be 1,3 return im -> ndarray uint8 HxWxC ''' im_list = [] for i in range(tensor.shape[0]): im = tensor.detach().cpu().data.numpy()[i] im = im.transpose(1,2,0) im = np.clip(im,min,max) im = ((im-min)/(max-min)*255).astype(np.uint8) im_list.append(im) return im_list class TPSGridGen(nn.Module): def __init__(self, target_height, target_width, target_control_points): ''' target_control_points -> torch.tensor num_pointx2 -1~1 source_control_points -> torch.tensor batch_size x num_point x 2 -1~1 return: grid -> batch_size x hw x 2 -1~1 ''' super(TPSGridGen, self).__init__() assert target_control_points.ndimension() == 2 assert target_control_points.size(1) == 2 N = target_control_points.size(0) self.num_points = N target_control_points = target_control_points.float() # create padded kernel matrix forward_kernel = torch.zeros(N + 3, N + 3) target_control_partial_repr = self.compute_partial_repr(target_control_points, target_control_points) forward_kernel[:N, :N].copy_(target_control_partial_repr) forward_kernel[:N, -3].fill_(1) forward_kernel[-3, :N].fill_(1) forward_kernel[:N, -2:].copy_(target_control_points) forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) # compute inverse matrix inverse_kernel = torch.inverse(forward_kernel) # create target cordinate matrix HW = target_height * target_width target_coordinate = list(itertools.product(range(target_height), range(target_width))) target_coordinate = torch.Tensor(target_coordinate) # HW x 2 Y, X = target_coordinate.split(1, dim = 1) Y = Y * 2 / (target_height - 1) - 1 X = X * 2 / (target_width - 1) - 1 target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y) target_coordinate_partial_repr = self.compute_partial_repr(target_coordinate.to(target_control_points.device), target_control_points) target_coordinate_repr = torch.cat([ target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate ], dim = 1) # register precomputed matrices self.register_buffer('inverse_kernel', inverse_kernel) self.register_buffer('padding_matrix', torch.zeros(3, 2)) self.register_buffer('target_coordinate_repr', target_coordinate_repr) def forward(self, source_control_points): assert source_control_points.ndimension() == 3 assert source_control_points.size(1) == self.num_points assert source_control_points.size(2) == 2 batch_size = source_control_points.size(0) Y = torch.cat([source_control_points, Variable(self.padding_matrix.expand(batch_size, 3, 2))], 1) mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y) source_coordinate = torch.matmul(Variable(self.target_coordinate_repr), mapping_matrix) return source_coordinate # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2 def compute_partial_repr(self, input_points, control_points): N = input_points.size(0) M = control_points.size(0) pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2) # original implementation, very slow # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance pairwise_diff_square = pairwise_diff * pairwise_diff pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) # fix numerical error for 0 * log(0), substitute all nan with 0 mask = repr_matrix != repr_matrix repr_matrix.masked_fill_(mask, 0) return repr_matrix ### deside wheather further process # point_area = cv2.contourArea(np.concatenate((biggest_angle[0].reshape(1,1,2),middle[0:3],biggest_angle[1].reshape(1,1,2),middle[9:12],biggest_angle[3].reshape(1,1,2),middle[3:6][::-1],biggest_angle[2].reshape(1,1,2),middle[6:9][::-1]),axis=0)) #### 最小外接矩形 # rect = cv2.minAreaRect(contour) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度) # box = cv2.boxPoints(rect) # cv2.boxPoints(rect) for OpenCV 3.x 获取最小外接矩形的4个顶点坐标 # box = np.int0(box) # box = box.reshape((4,1,2)) # minrect_area = cv2.contourArea(box) # print(abs(minrect_area-point_area)/point_area) #### 四个角点 IOU # biggest_box = np.concatenate((biggest_angle[0,:,:].reshape(1,1,2),biggest_angle[2,:,:].reshape(1,1,2),biggest_angle[3,:,:].reshape(1,1,2),biggest_angle[1,:,:].reshape(1,1,2)),axis=0) # biggest_mask = np.zeros_like(mask) # # corner_area = cv2.contourArea(biggest_box) # cv2.drawContours(biggest_mask,[biggest_box], -1, color=255, thickness=-1) # smooth = 1e-5 # biggest_mask_ = biggest_mask > 50 # mask_ = mask > 50 # intersection = (biggest_mask_ & mask_).sum() # union = (biggest_mask_ | mask_).sum() # iou = (intersection + smooth) / (union + smooth) # if iou > 0.975: # skip = True # else: # skip = False # print(iou) # cv2.imshow('mask',cv2.resize(mask,(512,512))) # cv2.imshow('biggest_mask',cv2.resize(biggest_mask,(512,512))) # cv2.waitKey(0)