# pylint: disable=R0801 """ This module is responsible for animating faces in videos using a combination of deep learning techniques. It provides a pipeline for generating face animations by processing video frames and extracting face features. The module utilizes various schedulers and utilities for efficient face animation and supports different types of latents for more control over the animation process. Functions and Classes: - FaceAnimatePipeline: A class that extends the DiffusionPipeline class from the diffusers library to handle face animation tasks. - __init__: Initializes the pipeline with the necessary components (VAE, UNets, face locator, etc.). - prepare_latents: Generates or loads latents for the animation process, scaling them according to the scheduler's requirements. - prepare_extra_step_kwargs: Prepares extra keyword arguments for the scheduler step, ensuring compatibility with different schedulers. - decode_latents: Decodes the latents into video frames, ready for animation. Usage: - Import the necessary packages and classes. - Create a FaceAnimatePipeline instance with the required components. - Prepare the latents for the animation process. - Use the pipeline to generate the animated video. Note: - This module is designed to work with the diffusers library, which provides the underlying framework for face animation using deep learning. - The module is intended for research and development purposes, and further optimization and customization may be required for specific use cases. """ import inspect from dataclasses import dataclass from typing import Callable, List, Optional, Union import numpy as np import torch from diffusers import (DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import BaseOutput from diffusers.utils.torch_utils import randn_tensor from einops import rearrange, repeat from tqdm import tqdm from hallo.models.mutual_self_attention import ReferenceAttentionControl @dataclass class FaceAnimatePipelineOutput(BaseOutput): """ FaceAnimatePipelineOutput is a custom class that inherits from BaseOutput and represents the output of the FaceAnimatePipeline. Attributes: videos (Union[torch.Tensor, np.ndarray]): A tensor or numpy array containing the generated video frames. Methods: __init__(self, videos: Union[torch.Tensor, np.ndarray]): Initializes the FaceAnimatePipelineOutput object with the generated video frames. """ videos: Union[torch.Tensor, np.ndarray] class FaceAnimatePipeline(DiffusionPipeline): """ FaceAnimatePipeline is a custom DiffusionPipeline for animating faces. It inherits from the DiffusionPipeline class and is used to animate faces by utilizing a variational autoencoder (VAE), a reference UNet, a denoising UNet, a face locator, and an image processor. The pipeline is responsible for generating and animating face latents, and decoding the latents to produce the final video output. Attributes: vae (VaeImageProcessor): Variational autoencoder for processing images. reference_unet (nn.Module): Reference UNet for mutual self-attention. denoising_unet (nn.Module): Denoising UNet for image denoising. face_locator (nn.Module): Face locator for detecting and cropping faces. image_proj (nn.Module): Image projector for processing images. scheduler (Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler]): Diffusion scheduler for controlling the noise level. Methods: __init__(self, vae, reference_unet, denoising_unet, face_locator, image_proj, scheduler): Initializes the FaceAnimatePipeline with the given components and scheduler. prepare_latents(self, batch_size, num_channels_latents, width, height, video_length, dtype, device, generator=None, latents=None): Prepares the initial latents for video generation. prepare_extra_step_kwargs(self, generator, eta): Prepares extra keyword arguments for the scheduler step. decode_latents(self, latents): Decodes the latents to produce the final video output. """ def __init__( self, vae, reference_unet, denoising_unet, face_locator, image_proj, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ) -> None: super().__init__() self.register_modules( vae=vae, reference_unet=reference_unet, denoising_unet=denoising_unet, face_locator=face_locator, scheduler=scheduler, image_proj=image_proj, ) self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1) self.ref_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, ) @property def _execution_device(self): if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def prepare_latents( self, batch_size: int, # Number of videos to generate in parallel num_channels_latents: int, # Number of channels in the latents width: int, # Width of the video frame height: int, # Height of the video frame video_length: int, # Length of the video in frames dtype: torch.dtype, # Data type of the latents device: torch.device, # Device to store the latents on generator: Optional[torch.Generator] = None, # Random number generator for reproducibility latents: Optional[torch.Tensor] = None # Pre-generated latents (optional) ): """ Prepares the initial latents for video generation. Args: batch_size (int): Number of videos to generate in parallel. num_channels_latents (int): Number of channels in the latents. width (int): Width of the video frame. height (int): Height of the video frame. video_length (int): Length of the video in frames. dtype (torch.dtype): Data type of the latents. device (torch.device): Device to store the latents on. generator (Optional[torch.Generator]): Random number generator for reproducibility. latents (Optional[torch.Tensor]): Pre-generated latents (optional). Returns: latents (torch.Tensor): Tensor of shape (batch_size, num_channels_latents, width, height) containing the initial latents for video generation. """ shape = ( batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_extra_step_kwargs(self, generator, eta): """ Prepares extra keyword arguments for the scheduler step. Args: generator (Optional[torch.Generator]): Random number generator for reproducibility. eta (float): The eta (η) parameter used with the DDIMScheduler. It corresponds to η in the DDIM paper (https://arxiv.org/abs/2010.02502) and should be between [0, 1]. Returns: dict: A dictionary containing the extra keyword arguments for the scheduler step. """ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def decode_latents(self, latents): """ Decode the latents to produce a video. Parameters: latents (torch.Tensor): The latents to be decoded. Returns: video (torch.Tensor): The decoded video. video_length (int): The length of the video in frames. """ video_length = latents.shape[2] latents = 1 / 0.18215 * latents latents = rearrange(latents, "b c f h w -> (b f) c h w") # video = self.vae.decode(latents).sample video = [] for frame_idx in tqdm(range(latents.shape[0])): video.append(self.vae.decode( latents[frame_idx: frame_idx + 1]).sample) video = torch.cat(video) video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video = (video / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 video = video.cpu().float().numpy() return video @torch.no_grad() def __call__( self, ref_image, face_emb, audio_tensor, face_mask, pixel_values_full_mask, pixel_values_face_mask, pixel_values_lip_mask, width, height, video_length, num_inference_steps, guidance_scale, num_images_per_prompt=1, eta: float = 0.0, motion_scale: Optional[List[torch.Tensor]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "tensor", return_dict: bool = True, callback: Optional[Callable[[ int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): # Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor device = self._execution_device do_classifier_free_guidance = guidance_scale > 1.0 # Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps batch_size = 1 # prepare clip image embeddings clip_image_embeds = face_emb clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype) encoder_hidden_states = self.image_proj(clip_image_embeds) uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds)) if do_classifier_free_guidance: encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0) reference_control_writer = ReferenceAttentionControl( self.reference_unet, do_classifier_free_guidance=do_classifier_free_guidance, mode="write", batch_size=batch_size, fusion_blocks="full", ) reference_control_reader = ReferenceAttentionControl( self.denoising_unet, do_classifier_free_guidance=do_classifier_free_guidance, mode="read", batch_size=batch_size, fusion_blocks="full", ) num_channels_latents = self.denoising_unet.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, width, height, video_length, clip_image_embeds.dtype, device, generator, ) # Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # Prepare ref image latents ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w") ref_image_tensor = self.ref_image_processor.preprocess(ref_image_tensor, height=height, width=width) # (bs, c, width, height) ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device) ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) face_mask = face_mask.unsqueeze(1).to(dtype=self.face_locator.dtype, device=self.face_locator.device) # (bs, f, c, H, W) face_mask = repeat(face_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length) face_mask = face_mask.transpose(1, 2) # (bs, c, f, H, W) face_mask = self.face_locator(face_mask) face_mask = torch.cat([torch.zeros_like(face_mask), face_mask], dim=0) if do_classifier_free_guidance else face_mask pixel_values_full_mask = ( [torch.cat([mask] * 2) for mask in pixel_values_full_mask] if do_classifier_free_guidance else pixel_values_full_mask ) pixel_values_face_mask = ( [torch.cat([mask] * 2) for mask in pixel_values_face_mask] if do_classifier_free_guidance else pixel_values_face_mask ) pixel_values_lip_mask = ( [torch.cat([mask] * 2) for mask in pixel_values_lip_mask] if do_classifier_free_guidance else pixel_values_lip_mask ) pixel_values_face_mask_ = [] for mask in pixel_values_face_mask: pixel_values_face_mask_.append( mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) pixel_values_face_mask = pixel_values_face_mask_ pixel_values_lip_mask_ = [] for mask in pixel_values_lip_mask: pixel_values_lip_mask_.append( mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) pixel_values_lip_mask = pixel_values_lip_mask_ pixel_values_full_mask_ = [] for mask in pixel_values_full_mask: pixel_values_full_mask_.append( mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) pixel_values_full_mask = pixel_values_full_mask_ uncond_audio_tensor = torch.zeros_like(audio_tensor) audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0) audio_tensor = audio_tensor.to(dtype=self.denoising_unet.dtype, device=self.denoising_unet.device) # denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Forward reference image if i == 0: self.reference_unet( ref_image_latents.repeat( (2 if do_classifier_free_guidance else 1), 1, 1, 1 ), torch.zeros_like(t), encoder_hidden_states=encoder_hidden_states, return_dict=False, ) reference_control_reader.update(reference_control_writer) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) noise_pred = self.denoising_unet( latent_model_input, t, encoder_hidden_states=encoder_hidden_states, mask_cond_fea=face_mask, full_mask=pixel_values_full_mask, face_mask=pixel_values_face_mask, lip_mask=pixel_values_lip_mask, audio_embedding=audio_tensor, motion_scale=motion_scale, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) reference_control_reader.clear() reference_control_writer.clear() # Post-processing images = self.decode_latents(latents) # (b, c, f, h, w) # Convert to tensor if output_type == "tensor": images = torch.from_numpy(images) if not return_dict: return images return FaceAnimatePipelineOutput(videos=images)