# pylint: disable=R0801 """ This module implements the Transformer3DModel, a PyTorch model designed for processing 3D data such as videos. It extends ModelMixin and ConfigMixin to provide a transformer model with support for gradient checkpointing and various types of attention mechanisms. The model can be configured with different parameters such as the number of attention heads, attention head dimension, and the number of layers. It also supports the use of audio modules for enhanced feature extraction from video data. """ from dataclasses import dataclass from typing import Optional import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models import ModelMixin from diffusers.utils import BaseOutput from einops import rearrange, repeat from torch import nn from .attention import (AudioTemporalBasicTransformerBlock, TemporalBasicTransformerBlock) @dataclass class Transformer3DModelOutput(BaseOutput): """ The output of the [`Transformer3DModel`]. Attributes: sample (`torch.FloatTensor`): The output tensor from the transformer model, which is the result of processing the input hidden states through the transformer blocks and any subsequent layers. """ sample: torch.FloatTensor class Transformer3DModel(ModelMixin, ConfigMixin): """ Transformer3DModel is a PyTorch model that extends `ModelMixin` and `ConfigMixin` to create a 3D transformer model. It implements the forward pass for processing input hidden states, encoder hidden states, and various types of attention masks. The model supports gradient checkpointing, which can be enabled by calling the `enable_gradient_checkpointing()` method. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_audio_module=False, depth=0, unet_block_name=None, stack_enable_blocks_name = None, stack_enable_blocks_depth = None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.use_audio_module = use_audio_module # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm( num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True ) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) if use_audio_module: self.transformer_blocks = nn.ModuleList( [ AudioTemporalBasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, depth=depth, unet_block_name=unet_block_name, stack_enable_blocks_name=stack_enable_blocks_name, stack_enable_blocks_depth=stack_enable_blocks_depth, ) for d in range(num_layers) ] ) else: # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ TemporalBasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d( inner_dim, in_channels, kernel_size=1, stride=1, padding=0 ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states, encoder_hidden_states=None, attention_mask=None, full_mask=None, face_mask=None, lip_mask=None, motion_scale=None, timestep=None, return_dict: bool = True, ): """ Forward pass for the Transformer3DModel. Args: hidden_states (torch.Tensor): The input hidden states. encoder_hidden_states (torch.Tensor, optional): The input encoder hidden states. attention_mask (torch.Tensor, optional): The attention mask. full_mask (torch.Tensor, optional): The full mask. face_mask (torch.Tensor, optional): The face mask. lip_mask (torch.Tensor, optional): The lip mask. timestep (int, optional): The current timestep. return_dict (bool, optional): Whether to return a dictionary or a tuple. Returns: output (Union[Tuple, BaseOutput]): The output of the Transformer3DModel. """ # Input assert ( hidden_states.dim() == 5 ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") # TODO if self.use_audio_module: encoder_hidden_states = rearrange( encoder_hidden_states, "bs f margin dim -> (bs f) margin dim", ) else: if encoder_hidden_states.shape[0] != hidden_states.shape[0]: encoder_hidden_states = repeat( encoder_hidden_states, "b n c -> (b f) n c", f=video_length ) batch, _, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) hidden_states = self.proj_in(hidden_states) # Blocks motion_frames = [] for _, block in enumerate(self.transformer_blocks): if isinstance(block, TemporalBasicTransformerBlock): hidden_states, motion_frame_fea = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, ) motion_frames.append(motion_frame_fea) else: hidden_states = block( hidden_states, # shape [2, 4096, 320] encoder_hidden_states=encoder_hidden_states, # shape [2, 20, 640] attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, timestep=timestep, video_length=video_length, motion_scale=motion_scale, ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output, motion_frames) return Transformer3DModelOutput(sample=output)