# pylint: disable=R0801 # pylint: disable=W0613 # pylint: disable=W0221 """ temporal_transformers.py This module provides classes and functions for implementing Temporal Transformers in PyTorch, designed for handling video data and temporal sequences within transformer-based models. Functions: zero_module(module) Zero out the parameters of a module and return it. Classes: TemporalTransformer3DModelOutput(BaseOutput) Dataclass for storing the output of TemporalTransformer3DModel. VanillaTemporalModule(nn.Module) A Vanilla Temporal Module class for handling temporal data. TemporalTransformer3DModel(nn.Module) A Temporal Transformer 3D Model class for transforming temporal data. TemporalTransformerBlock(nn.Module) A Temporal Transformer Block class for building the transformer architecture. PositionalEncoding(nn.Module) A Positional Encoding module for transformers to encode positional information. Dependencies: math dataclasses.dataclass typing (Callable, Optional) torch diffusers (FeedForward, Attention, AttnProcessor) diffusers.utils (BaseOutput) diffusers.utils.import_utils (is_xformers_available) einops (rearrange, repeat) torch.nn xformers xformers.ops Example Usage: >>> motion_module = get_motion_module(in_channels=512, motion_module_type="Vanilla", motion_module_kwargs={}) >>> output = motion_module(input_tensor, temb, encoder_hidden_states) This module is designed to facilitate the creation, training, and inference of transformer models that operate on temporal data, such as videos or time-series. It includes mechanisms for applying temporal attention, managing positional encoding, and integrating with external libraries for efficient attention operations. """ # This code is copied from https://github.com/guoyww/AnimateDiff. import math import torch import xformers import xformers.ops from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import Attention, AttnProcessor from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from einops import rearrange, repeat from torch import nn def zero_module(module): """ Zero out the parameters of a module and return it. Args: - module: A PyTorch module to zero out its parameters. Returns: A zeroed out PyTorch module. """ for p in module.parameters(): p.detach().zero_() return module class TemporalTransformer3DModelOutput(BaseOutput): """ Output class for the TemporalTransformer3DModel. Attributes: sample (torch.FloatTensor): The output sample tensor from the model. """ sample: torch.FloatTensor def get_sample_shape(self): """ Returns the shape of the sample tensor. Returns: Tuple: The shape of the sample tensor. """ return self.sample.shape def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict): """ This function returns a motion module based on the given type and parameters. Args: - in_channels (int): The number of input channels for the motion module. - motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported. - motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor. Returns: VanillaTemporalModule: The created motion module. Raises: ValueError: If an unsupported motion_module_type is provided. """ if motion_module_type == "Vanilla": return VanillaTemporalModule( in_channels=in_channels, **motion_module_kwargs, ) raise ValueError class VanillaTemporalModule(nn.Module): """ A Vanilla Temporal Module class. Args: - in_channels (int): The number of input channels for the motion module. - num_attention_heads (int): Number of attention heads. - num_transformer_block (int): Number of transformer blocks. - attention_block_types (tuple): Types of attention blocks. - cross_frame_attention_mode: Mode for cross-frame attention. - temporal_position_encoding (bool): Flag for temporal position encoding. - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. - temporal_attention_dim_div (int): Divisor for temporal attention dimension. - zero_initialize (bool): Flag for zero initialization. """ def __init__( self, in_channels, num_attention_heads=8, num_transformer_block=2, attention_block_types=("Temporal_Self", "Temporal_Self"), cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=24, temporal_attention_dim_div=1, zero_initialize=True, ): super().__init__() self.temporal_transformer = TemporalTransformer3DModel( in_channels=in_channels, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, num_layers=num_transformer_block, attention_block_types=attention_block_types, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ) if zero_initialize: self.temporal_transformer.proj_out = zero_module( self.temporal_transformer.proj_out ) def forward( self, input_tensor, encoder_hidden_states, attention_mask=None, ): """ Forward pass of the TemporalTransformer3DModel. Args: hidden_states (torch.Tensor): The hidden states of the model. encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder. attention_mask (torch.Tensor, optional): The attention mask. Returns: torch.Tensor: The output tensor after the forward pass. """ hidden_states = input_tensor hidden_states = self.temporal_transformer( hidden_states, encoder_hidden_states ) output = hidden_states return output class TemporalTransformer3DModel(nn.Module): """ A Temporal Transformer 3D Model class. Args: - in_channels (int): The number of input channels. - num_attention_heads (int): Number of attention heads. - attention_head_dim (int): Dimension of attention heads. - num_layers (int): Number of transformer layers. - attention_block_types (tuple): Types of attention blocks. - dropout (float): Dropout rate. - norm_num_groups (int): Number of groups for normalization. - cross_attention_dim (int): Dimension for cross-attention. - activation_fn (str): Activation function. - attention_bias (bool): Flag for attention bias. - upcast_attention (bool): Flag for upcast attention. - cross_frame_attention_mode: Mode for cross-frame attention. - temporal_position_encoding (bool): Flag for temporal position encoding. - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. """ def __init__( self, in_channels, num_attention_heads, attention_head_dim, num_layers, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups=32, cross_attention_dim=768, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=24, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim self.norm = torch.nn.GroupNorm( num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True ) self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ TemporalTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, attention_block_types=attention_block_types, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) def forward(self, hidden_states, encoder_hidden_states=None): """ Forward pass for the TemporalTransformer3DModel. Args: hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels). encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels). Returns: torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels). """ assert ( hidden_states.dim() == 5 ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, _, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) hidden_states = self.proj_in(hidden_states) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, ) # output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) return output class TemporalTransformerBlock(nn.Module): """ A Temporal Transformer Block class. Args: - dim (int): Dimension of the block. - num_attention_heads (int): Number of attention heads. - attention_head_dim (int): Dimension of attention heads. - attention_block_types (tuple): Types of attention blocks. - dropout (float): Dropout rate. - cross_attention_dim (int): Dimension for cross-attention. - activation_fn (str): Activation function. - attention_bias (bool): Flag for attention bias. - upcast_attention (bool): Flag for upcast attention. - cross_frame_attention_mode: Mode for cross-frame attention. - temporal_position_encoding (bool): Flag for temporal position encoding. - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. """ def __init__( self, dim, num_attention_heads, attention_head_dim, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, cross_attention_dim=768, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=24, ): super().__init__() attention_blocks = [] norms = [] for block_name in attention_block_types: attention_blocks.append( VersatileAttention( attention_mode=block_name.split("_", maxsplit=1)[0], cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ) ) norms.append(nn.LayerNorm(dim)) self.attention_blocks = nn.ModuleList(attention_blocks) self.norms = nn.ModuleList(norms) self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.ff_norm = nn.LayerNorm(dim) def forward( self, hidden_states, encoder_hidden_states=None, video_length=None, ): """ Forward pass for the TemporalTransformerBlock. Args: hidden_states (torch.Tensor): The input hidden states with shape (batch_size, video_length, in_channels). encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_length, in_channels). video_length (int, optional): The length of the video. Returns: torch.Tensor: The output hidden states with shape (batch_size, video_length, in_channels). """ for attention_block, norm in zip(self.attention_blocks, self.norms): norm_hidden_states = norm(hidden_states) hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, video_length=video_length, ) + hidden_states ) hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output class PositionalEncoding(nn.Module): """ Positional Encoding module for transformers. Args: - d_model (int): Model dimension. - dropout (float): Dropout rate. - max_len (int): Maximum length for positional encoding. """ def __init__(self, d_model, dropout=0.0, max_len=24): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe = torch.zeros(1, max_len, d_model) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): """ Forward pass of the PositionalEncoding module. This method takes an input tensor `x` and adds the positional encoding to it. The positional encoding is generated based on the input tensor's shape and is added to the input tensor element-wise. Args: x (torch.Tensor): The input tensor to be positionally encoded. Returns: torch.Tensor: The positionally encoded tensor. """ x = x + self.pe[:, : x.size(1)] return self.dropout(x) class VersatileAttention(Attention): """ Versatile Attention class. Args: - attention_mode: Attention mode. - temporal_position_encoding (bool): Flag for temporal position encoding. - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. """ def __init__( self, *args, attention_mode=None, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=24, **kwargs, ): super().__init__(*args, **kwargs) assert attention_mode == "Temporal" self.attention_mode = attention_mode self.is_cross_attention = kwargs.get("cross_attention_dim") is not None self.pos_encoder = ( PositionalEncoding( kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len, ) if (temporal_position_encoding and attention_mode == "Temporal") else None ) def extra_repr(self): """ Returns a string representation of the module with information about the attention mode and whether it is cross-attention. Returns: str: A string representation of the module. """ return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" def set_use_memory_efficient_attention_xformers( self, use_memory_efficient_attention_xformers: bool, ): """ Sets the use of memory-efficient attention xformers for the VersatileAttention class. Args: use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not. Returns: None """ if use_memory_efficient_attention_xformers: if not is_xformers_available(): raise ModuleNotFoundError( ( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers" ), name="xformers", ) if not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" " only available for GPU " ) try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e processor = AttnProcessor() else: processor = AttnProcessor() self.set_processor(processor) def forward( self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, **cross_attention_kwargs, ): """ Args: hidden_states (`torch.Tensor`): The hidden states to be passed through the model. encoder_hidden_states (`torch.Tensor`, optional): The encoder hidden states to be passed through the model. attention_mask (`torch.Tensor`, optional): The attention mask to be used in the model. video_length (`int`, optional): The length of the video. cross_attention_kwargs (`dict`, optional): Additional keyword arguments to be used for cross-attention. Returns: `torch.Tensor`: The output tensor after passing through the model. """ if self.attention_mode == "Temporal": d = hidden_states.shape[1] # d means HxW hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) if self.pos_encoder is not None: hidden_states = self.pos_encoder(hidden_states) encoder_hidden_states = ( repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states ) else: raise NotImplementedError hidden_states = self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.attention_mode == "Temporal": hidden_states = rearrange( hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states