import copy import numpy as np from liegroups.numpy import SE3 def test_identity(): T = SE3.identity() assert isinstance(T, SE3) def test_dot(): T = np.array([[0, 0, -1, 0.1], [0, 1, 0, 0.5], [1, 0, 0, -0.5], [0, 0, 0, 1]]) T2 = T.dot(T) assert np.allclose( (SE3.from_matrix(T).dot(SE3.from_matrix(T))).as_matrix(), T2) def test_wedge_vee(): xi = [1, 2, 3, 4, 5, 6] Xi = SE3.wedge(xi) xis = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]) Xis = SE3.wedge(xis) assert np.array_equal(xi, SE3.vee(Xi)) assert np.array_equal(xis, SE3.vee(Xis)) def test_curlywedge_curlyvee(): xi = [1, 2, 3, 4, 5, 6] Psi = SE3.curlywedge(xi) xis = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]) Psis = SE3.curlywedge(xis) assert np.array_equal(xi, SE3.curlyvee(Psi)) assert np.array_equal(xis, SE3.curlyvee(Psis)) def test_odot(): p1 = [1, 2, 3] p2 = [1, 2, 3, 1] p3 = [1, 2, 3, 0] odot12 = np.vstack([SE3.odot(p1), np.zeros([1, 6])]) odot13 = np.vstack([SE3.odot(p1, directional=True), np.zeros([1, 6])]) odot2 = SE3.odot(p2) odot3 = SE3.odot(p3) assert np.array_equal(odot12, odot2) assert np.array_equal(odot13, odot3) def test_odot_vectorized(): p1 = [1, 2, 3] p2 = [2, 3, 4] ps = np.array([p1, p2]) odot1 = SE3.odot(p1) odot2 = SE3.odot(p2) odots = SE3.odot(ps) assert np.array_equal(odot1, odots[0, :, :]) assert np.array_equal(odot2, odots[1, :, :]) def test_exp_log(): T = SE3.exp([1, 2, 3, 4, 5, 6]) assert np.allclose(SE3.exp(SE3.log(T)).as_matrix(), T.as_matrix()) def test_left_jacobian(): xi1 = [1, 2, 3, 4, 5, 6] assert np.allclose( SE3.left_jacobian(xi1).dot(SE3.inv_left_jacobian(xi1)), np.identity(6) ) xi2 = [0, 0, 0, 0, 0, 0] assert np.allclose( SE3.left_jacobian(xi2).dot(SE3.inv_left_jacobian(xi2)), np.identity(6) ) def test_perturb(): T = SE3.exp([1, 2, 3, 4, 5, 6]) T_copy = copy.deepcopy(T) xi = [0.6, 0.5, 0.4, 0.3, 0.2, 0.1] T.perturb(xi) assert np.allclose(T.as_matrix(), (SE3.exp(xi).dot(T_copy)).as_matrix()) def test_normalize(): T = SE3.exp([1, 2, 3, 4, 5, 6]) T.rot.mat += 0.1 T.normalize() assert SE3.is_valid_matrix(T.as_matrix()) def test_inv(): T = SE3.exp([1, 2, 3, 4, 5, 6]) assert np.allclose((T.dot(T.inv())).as_matrix(), np.identity(4)) def test_adjoint(): T = SE3.exp([1, 2, 3, 4, 5, 6]) assert T.adjoint().shape == (6, 6) def test_transform_vectorized(): T = SE3.exp([1, 2, 3, 4, 5, 6]) pt1 = np.array([1, 2, 3]) pt2 = np.array([4, 5, 6]) pt3 = np.array([1, 2, 3, 1]) pt4 = np.array([4, 5, 6, 1]) pts12 = np.array([pt1, pt2]) # 2x3 pts34 = np.array([pt3, pt4]) # 2x4 Tpt1 = T.dot(pt1) Tpt2 = T.dot(pt2) Tpt3 = T.dot(pt3) Tpt4 = T.dot(pt4) Tpts12 = T.dot(pts12) Tpts34 = T.dot(pts34) assert np.allclose(Tpt1, Tpts12[0]) assert np.allclose(Tpt2, Tpts12[1]) assert np.allclose(Tpt3, Tpts34[0]) assert np.allclose(Tpt4, Tpts34[1])