!pip install ipynb from ipynb.fs.full.sentimental_analysis_training_pipeline import DepressionClassifier import gradio as gr import numpy as np #from PIL import Image #import requests import hopsworks import joblib project = hopsworks.login(project='liangc40') #fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("sentimental_analysis_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/sentimental_analysis_model.pkl") def analyse(text): label = model(text) return label with gr.Blocks() as demo: gr.Markdown("

Sentiment Analysis with Fine-tuned BERT Model") inputs_text=gr.Textbox(placeholder='Type your text for which you want know the sentiment', label='Text') text_button = gr.Button('Analyse Sentiment') output_text_sentiment = gr.Textbox(placeholder='Sentiment of the text.', label='Sentiment') text_button.click(analyse, inputs = inputs_text, outputs = output_text_sentiment) if __name__ == "__main__": demo.launch()