model_name = "Qwen" cmd_to_install = "`pip install -r request_llm/requirements_qwen.txt`" from transformers import AutoModel, AutoTokenizer import time import threading import importlib from toolbox import update_ui, get_conf from multiprocessing import Process, Pipe from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM # ------------------------------------------------------------------------------------------------------------------------ # 🔌💻 Local Model # ------------------------------------------------------------------------------------------------------------------------ @SingletonLocalLLM class GetONNXGLMHandle(LocalLLMHandle): def load_model_info(self): # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 self.model_name = model_name self.cmd_to_install = cmd_to_install def load_model_and_tokenizer(self): # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 import os, glob import os import platform from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model_id = 'qwen/Qwen-7B-Chat' revision = 'v1.0.1' self._tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True) # use fp16 model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", revision=revision, trust_remote_code=True, fp16=True).eval() model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参 self._model = model return self._model, self._tokenizer def llm_stream_generator(self, **kwargs): # 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行 def adaptor(kwargs): query = kwargs['query'] max_length = kwargs['max_length'] top_p = kwargs['top_p'] temperature = kwargs['temperature'] history = kwargs['history'] return query, max_length, top_p, temperature, history query, max_length, top_p, temperature, history = adaptor(kwargs) for response in self._model.chat(self._tokenizer, query, history=history, stream=True): yield response def try_to_import_special_deps(self, **kwargs): # import something that will raise error if the user does not install requirement_*.txt # 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行 import importlib importlib.import_module('modelscope') # ------------------------------------------------------------------------------------------------------------------------ # 🔌💻 GPT-Academic Interface # ------------------------------------------------------------------------------------------------------------------------ predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name)