import gradio as gr import matplotlib.pyplot as plt def plot_forecast(num_param, batch_size, precision, seq_len): # Convert number (input as B) num_param = float(num_param) * 1e9 # Convert precision to bytes precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision] # Model Parameters: N×precision y1 = num_param * precision / (1024**3) # Optimizer States: 2×N×precision y2 = 2 * num_param * precision / (1024**3) # Activations: B×Sequence Length×K×precision K = 4.6894e-04 * num_param + 1.8494e06 y3 = batch_size * seq_len * K * precision / (1024**3) # Gradients: N×precision y4 = num_param * precision / (1024**3) fig = plt.figure(figsize=(4, 4)) ax = fig.add_subplot(111) # Create stacked bars ax.bar(0, y1, color="r") ax.bar(0, y2, bottom=y1, color="b") ax.bar(0, y3, bottom=y1 + y2, color="g") ax.bar(0, y4, bottom=y1 + y2 + y3, color="y") # Add text labels inside the bars ax.text(0, y1 / 2, "Model Parameters", ha="center", va="center", color="white", fontweight="bold") ax.text(0, y1 + y2 / 2, "Optimizer States", ha="center", va="center", color="white", fontweight="bold") ax.text(0, y1 + y2 + y3 / 2, "Activations", ha="center", va="center", color="white", fontweight="bold") ax.text(0, y1 + y2 + y3 + y4 / 2, "Gradients", ha="center", va="center", color="white", fontweight="bold") # remove x axis ax.xaxis.set_visible(False) # Set GB as the unit for the y-axis ax.set_ylabel("Memory (GB)") fig.tight_layout() return fig demo = gr.Interface( plot_forecast, [ gr.Number(7, label="Number of parameters (B)"), gr.Radio([1, 2, 4, 8, 16, 32, 64, 128], value=8, label="Batch size"), gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision"), gr.Slider(1, 1024, label="Sequence Length", step=1, value=128), ], gr.Plot(label="forecast", format="png"), ) if __name__ == "__main__": demo.launch()