from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration import torch from PIL import Image class InstructBlip: device = "cuda" if torch.cuda.is_available() else "cpu" def __init__(self, model_pretrain:str = "Salesforce/instructblip-vicuna-7b"): self.model = InstructBlipForConditionalGeneration.from_pretrained(model_pretrain , device_map={"": 0}, torch_dtype=torch.float16) self.processor = InstructBlipProcessor.from_pretrained(model_pretrain) def image_captioning(self, image: Image.Image) -> str: prompt = "What are the features of this picture?" inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device) outputs = self.model.generate( **inputs, do_sample=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() return generated_text def visual_question_answering(self, image: Image.Image, prompt: str) -> str: inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(device) outputs = self.model.generate( **inputs, do_sample=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() return generated_text