import gradio as gr import os import torch import librosa from glob import glob from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline, AutoModelForTokenClassification, TokenClassificationPipeline, Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM # ASR model_name = "jonatasgrosman/wav2vec2-large-xlsr-53-english" processor_asr = Wav2Vec2Processor.from_pretrained(model_name) model_asr = Wav2Vec2ForCTC.from_pretrained(model_name) # Classifier Intent model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification' tokenizer_intent = AutoTokenizer.from_pretrained(model_name) model_intent = AutoModelForSequenceClassification.from_pretrained(model_name) classifier_intent = TextClassificationPipeline(model=model_intent, tokenizer=tokenizer_intent) # Classifier Language model_name = 'qanastek/51-languages-classifier' tokenizer_langs = AutoTokenizer.from_pretrained(model_name) model_langs = AutoModelForSequenceClassification.from_pretrained(model_name) classifier_language = TextClassificationPipeline(model=model_langs, tokenizer=tokenizer_langs) # NER Extractor model_name = 'qanastek/XLMRoberta-Alexa-Intents-NER-NLU' tokenizer_ner = AutoTokenizer.from_pretrained(model_name) model_ner = AutoModelForTokenClassification.from_pretrained(model_name) predict_ner = TokenClassificationPipeline(model=model_ner, tokenizer=tokenizer_ner) EXAMPLE_DIR = './' examples = sorted(glob(os.path.join(EXAMPLE_DIR, '*.wav'))) def transcribe(audio_path): speech_array, sampling_rate = librosa.load(audio_path, sr=16_000) inputs = processor_asr(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model_asr(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) return processor_asr.batch_decode(predicted_ids)[0] def getUniform(text): idx = 0 res = {} for t in text: raw = t["entity"].replace("B-","").replace("I-","") word = t["word"].replace("▁","") if "B-" in t["entity"]: res[f"{raw}|{idx}"] = [word] idx += 1 else: res[f"{raw}|{idx}"].append(word) res = [(r.split("|")[0], res[r]) for r in res] return res def process(path): text = transcribe(path) intent_class = classifier_intent(text)[0]["label"] language_class = classifier_language(text)[0]["label"] named_entities = getUniform(predict_ner(text)) return { "text": text, "language": language_class, "intent_class": intent_class, "named_entities": named_entities, } audio_paths = [ "/users/ylabrak/Alexa_NLU/Pipeline/wavs/set-the-volume-to-low.wav", "/users/ylabrak/Alexa_NLU/Pipeline/wavs/tell-me-a-joke.wav", "/users/ylabrak/Alexa_NLU/Pipeline/wavs/tell me the artist of this song.wav", "/users/ylabrak/Alexa_NLU/Pipeline/wavs/order-a-pizza.wav", "/users/ylabrak/Alexa_NLU/Pipeline/wavs/TTS_1/tell-me-a-good-joke.wav", "/users/ylabrak/Alexa_NLU/Pipeline/wavs/TTS_1/order me a pizza.wav", "/users/ylabrak/Alexa_NLU/Pipeline/wavs/TTS_1/tell-me-the-artist-of-this-song.wav", ] def predict(wav_file): res = process(wav_file) return res # iface = gr.Interface(fn=predict, inputs="text", outputs="text") iface = gr.Interface( predict, title='Alexa NLU Clone', description='Upload your wav file to test the model', inputs=[ gr.inputs.Audio(label='wav file', source='microphone', type='filepath') ], outputs=[ gr.outputs.JSON(label='Slot Recognition + Intent Classification + Language Classification + ASR'), ], examples=examples, article='Made with ❤️ by Yanis Labrak thanks to 🤗', ) iface.launch()