# ------------------------------------------------------------------------ # Copyright (c) 2022 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Source: https://github.com/megvii-research/NAFNet ''' Simple Baselines for Image Restoration @article{chen2022simple, title={Simple Baselines for Image Restoration}, author={Chen, Liangyu and Chu, Xiaojie and Zhang, Xiangyu and Sun, Jian}, journal={arXiv preprint arXiv:2204.04676}, year={2022} } ''' import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from insir_models.nafnet_utils import Local_Base, LayerNorm2d class SimpleGate(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class NAFBlock(nn.Module): def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) def forward(self, inp): x = inp x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = self.sg(x) x = x * self.sca(x) x = self.conv3(x) x = self.dropout1(x) y = inp + x * self.beta x = self.conv4(self.norm2(y)) x = self.sg(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma class NAFNet(nn.Module): def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[]): super().__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() chan = width for num in enc_blk_nums: self.encoders.append( nn.Sequential( *[NAFBlock(chan) for _ in range(num)] ) ) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks = \ nn.Sequential( *[NAFBlock(chan) for _ in range(middle_blk_num)] ) for num in dec_blk_nums: self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( nn.Sequential( *[NAFBlock(chan) for _ in range(num)] ) ) self.padder_size = 2 ** len(self.encoders) def forward(self, inp): B, C, H, W = inp.shape inp = self.check_image_size(inp) x = self.intro(inp) encs = [] for encoder, down in zip(self.encoders, self.downs): x = encoder(x) encs.append(x) x = down(x) x = self.middle_blks(x) for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): x = up(x) x = x + enc_skip x = decoder(x) x = self.ending(x) x = x + inp return x[:, :, :H, :W] def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) return x class NAFNetLocal(Local_Base, NAFNet): def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs): Local_Base.__init__(self) NAFNet.__init__(self, *args, **kwargs) N, C, H, W = train_size base_size = (int(H * 1.5), int(W * 1.5)) self.eval() with torch.no_grad(): self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp) def create_nafnet(input_channels = 3, width = 32, enc_blks = [2, 2, 4, 8], middle_blk_num = 12, dec_blks = [2, 2, 2, 2]): """ Create Nafnet model https://github.com/megvii-research/NAFNet/blob/main/options/test/SIDD/NAFNet-width32.yml """ net = NAFNet(img_channel=input_channels, width=width, middle_blk_num=middle_blk_num, enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) # inp_shape = (3, 256, 256) # from ptflops import get_model_complexity_info # macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) # params = float(params[:-3]) # macs = float(macs[:-4]) # print(macs, params) return net