import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "microsoft/phi-2", torch_dtype=torch.float32, device_map="auto", trust_remote_code=True ) # Streamlit app st.title("Fake news Generation with Transformers Microsoft phi-2") st.image("https://raw.githubusercontent.com/noorkhokhar99/NewsGuardian/main/logo.jpeg") # User input prompt = st.text_area("Enter your prompt:", "This news is real or fake; you get results from here NewsGuardian") # Generate output if st.button("Generate"): with torch.no_grad(): token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") output_ids = model.generate( token_ids.to(model.device), max_new_tokens=20, do_sample=True, temperature=0.1 ) output = tokenizer.decode(output_ids[0][token_ids.size(1):]) st.text("Generated Output:") st.write(output)