import gradio as gr from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image import torch # Load model and processor mix_model_id = "google/paligemma-3b-mix-224" mix_model = PaliGemmaForConditionalGeneration.from_pretrained(mix_model_id) mix_processor = AutoProcessor.from_pretrained(mix_model_id) # Define inference function def process_image(image, prompt): # Process the image and prompt using the processor inputs = mix_processor(image.convert("RGB"), prompt, return_tensors="pt") try: # Generate output from the model output = mix_model.generate(**inputs, max_new_tokens=20) # Decode and return the output decoded_output = mix_processor.decode(output[0], skip_special_tokens=True) # Return the answer (exclude the prompt part from output) return decoded_output[len(prompt):] except IndexError as e: print(f"IndexError: {e}") return "An error occurred during processing." # Define the Gradio interface inputs = [ gr.Image(type="pil"), gr.Textbox(label="Prompt", placeholder="Enter your question") ] outputs = gr.Textbox(label="Answer") # Create the Gradio app demo = gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Image Captioning with Mix PaliGemma Model", description="Upload an image and get captions based on your prompt.") # Launch the app demo.launch()