# !pip install mistune import mistune from mistune.plugins.table import table from jinja2 import Template import re import os from urllib.parse import urlparse def md_to_html(md_text): renderer = mistune.HTMLRenderer() markdown_renderer = mistune.Markdown(renderer, plugins=[table]) html_content = markdown_renderer(md_text) return html_content.replace('\n', '') ####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------#### from datetime import datetime import psycopg2 from dotenv import load_dotenv, find_dotenv # Load environment variables from .env file load_dotenv("keys.env") TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') BRAVE_API_KEY = os.getenv('BRAVE_API_KEY') GROQ_API_KEY = os.getenv("GROQ_API_KEY") HELICON_API_KEY = os.getenv("HELICON_API_KEY") SUPABASE_USER = os.environ['SUPABASE_USER'] SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD'] def insert_data(user_id, user_query, subtopic_query, response, html_report): # Connect to your database conn = psycopg2.connect( dbname="postgres", user=SUPABASE_USER, password=SUPABASE_PASSWORD, host="aws-0-us-west-1.pooler.supabase.com", port="5432" ) cur = conn.cursor() insert_query = """ INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at) VALUES (%s, %s, %s, %s, %s, %s); """ cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now())) conn.commit() cur.close() conn.close() ####-----------------------------------------------------END----------------------------------------------------------#### import ast from fpdf import FPDF import re import pandas as pd import nltk import requests import json from retry import retry from concurrent.futures import ThreadPoolExecutor, as_completed from bs4 import BeautifulSoup from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from brave import Brave from fuzzy_json import loads from half_json.core import JSONFixer from openai import OpenAI from together import Together llm_default_small = "meta-llama/Llama-3-8b-chat-hf" llm_default_medium = "meta-llama/Llama-3-70b-chat-hf" SysPromptData = """You are expert in information extraction from the given context. Steps to follow: 1. Check if relevant factual data regarding is present in the . - IF YES, extract the maximum relevant factual information related to from the . - IF NO, then return "N/A" Rules to follow: - Return N/A if information is not present in the scraped data. - FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION """ SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments." SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY #Additional instructions: ##Use the following search operators if necessory OR #to cover multiple topics * #wildcard to match any word or phrase AND #to include specific topics.""" import tiktoken # Used to limit tokens encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better def limit_tokens(input_string, token_limit=7500): """ Limit tokens sent to the model """ return encoding.decode(encoding.encode(input_string)[:token_limit]) together_client = OpenAI( api_key=TOGETHER_API_KEY, base_url="https://together.hconeai.com/v1", default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"}) groq_client = OpenAI( api_key=GROQ_API_KEY, base_url="https://groq.hconeai.com/openai/v1", default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"}) # Groq model names llm_default_small = "llama3-8b-8192" llm_default_medium = "llama3-70b-8192" # Together Model names (fallback) llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf" llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf" ### ------END OF LLM CONFIG-------- ### def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000): messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}] params = { "model": model, "messages": messages, "temperature": temperature, "frequency_penalty": frequency_penalty, "max_tokens": max_tokens } try: response = groq_client.chat.completions.create(**params) return response.choices[0].message.content except Exception as e: print(f"Error calling GROQ API: {e}") params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium response = together_client.chat.completions.create(**params) return response.choices[0].message.content def json_from_text(text): """ Extracts JSON from text using regex and fuzzy JSON loading. """ try: return json.loads(text) except: match = re.search(r'\{[\s\S]*\}', text) if match: json_out = match.group(0) else: json_out = text # Use Fuzzy JSON loading return loads(json_out) def remove_stopwords(text): stop_words = set(stopwords.words('english')) words = word_tokenize(text) filtered_text = [word for word in words if word.lower() not in stop_words] return ' '.join(filtered_text) def rephrase_content(data_format, content, query): if data_format == "Structured data": return together_response(f""" {content} extract the maximum relevant factual information covering all aspects of {query} ONLY IF AVAILABLE in the scraped data.""", SysPrompt=SysPromptData, max_tokens=900, ) elif data_format == "Quantitative data": return together_response( f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}", SysPrompt=SysPromptData, max_tokens=500, ) else: return together_response( f"return only the factual information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}", SysPrompt=SysPromptData, max_tokens=500, ) def extract_main_content(url): if url: try: result = urlparse(url) if all([result.scheme, result.netloc]): # Prepare query parameters params = { "url": url, "favor_precision": False, "favor_recall": False, "output_format": "markdown", "target_language": "en", "include_tables": True, "include_images": False, "include_links": False, "deduplicate": True, } # Make request to FastAPI endpoint response = requests.get("https://pvanand-web-scraping.hf.space/extract-article", params=params) if response.status_code == 200: return response.json()["article"] else: return "" except: return "" return "" def process_content(data_format, url, query): content = extract_main_content(url) if content: rephrased_content = rephrase_content( data_format=data_format, content=limit_tokens(content, token_limit=4000), query=query, ) return rephrased_content, url return "", url def fetch_and_extract_content(data_format, urls, query): with ThreadPoolExecutor(max_workers=len(urls)) as executor: future_to_url = { executor.submit(process_content, data_format, url, query): url for url in urls } all_text_with_urls = [future.result() for future in as_completed(future_to_url)] return all_text_with_urls @retry(tries=3, delay=0.25) def search_brave(query, num_results=5): cleaned_query = re.sub(r'[^a-zA-Z0-9]+', '', query) search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip() cleaned_search_query = re.sub(r'[^a-zA-Z0-9*]+', '', search_query) brave = Brave(BRAVE_API_KEY) search_results = brave.search(q=cleaned_search_query, count=num_results) return [url.__str__() for url in search_results.urls],cleaned_search_query