# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
def md_to_html(md_text):
renderer = mistune.HTMLRenderer()
markdown_renderer = mistune.Markdown(renderer, plugins=[table])
html_content = markdown_renderer(md_text)
return html_content.replace('\n', '')
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2
from dotenv import load_dotenv, find_dotenv
# Load environment variables from .env file
load_dotenv("keys.env")
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
def insert_data(user_id, user_query, subtopic_query, response, html_report):
# Connect to your database
conn = psycopg2.connect(
dbname="postgres",
user=SUPABASE_USER,
password=SUPABASE_PASSWORD,
host="aws-0-us-west-1.pooler.supabase.com",
port="5432"
)
cur = conn.cursor()
insert_query = """
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
VALUES (%s, %s, %s, %s, %s, %s);
"""
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
conn.commit()
cur.close()
conn.close()
####-----------------------------------------------------END----------------------------------------------------------####
import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"
SysPromptJson = "You are now in the role of an expert AI who can extract structured information from user request. Both key and value pairs must be in double quotes. You must respond ONLY with a valid JSON file. Do not add any additional comments."
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments."
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
def limit_tokens(input_string, token_limit=8000):
"""
Limit tokens sent to the model
"""
return encoding.decode(encoding.encode(input_string)[:token_limit])
def together_response(message, model=llm_default_small, SysPrompt = SysPromptDefault,temperature=0.2):
client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://gateway.hconeai.com/openai/v1",
default_headers={
"Helicone-Auth": f"Bearer {HELICON_API_KEY}",
"Helicone-Target-Url": "https://api.groq.com"
}
)
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
try:
# Using fuzzy json loader
return loads(json_out)
except Exception:
# Using JSON fixer/ Fixes even half json/ Remove if you need an exception
fix_json = JSONFixer()
return loads(fix_json.fix(json_out).line)
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_text = [word for word in words if word.lower() not in stop_words]
return ' '.join(filtered_text)
def rephrase_content(content, query):
return together_response(f"You are an information retriever and summarizer,ignore everything you know, return only the\
factual information regarding the query: {{{query}}} into a maximum of {500} words. Output should be concise chunks of \
paragraphs or tables or both, ignore links, using the scraped context:{{{content}}}")
class Scraper:
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"):
self.session = requests.Session()
self.session.headers.update({"User-Agent": user_agent})
@retry(tries=3, delay=1)
def fetch_content(self, url):
try:
response = self.session.get(url, timeout=2)
if response.status_code == 200:
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching page content for {url}: {e}")
return None
def extract_main_content(html):
if html:
plain_text = ""
soup = BeautifulSoup(html, 'lxml')
for element in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'table']):
plain_text += element.get_text(separator=" ", strip=True) + "\n"
return plain_text
return ""
def process_content(url, query):
scraper = Scraper()
html_content = scraper.fetch_content(url)
if html_content:
content = extract_main_content(html_content)
if content:
rephrased_content = rephrase_content(limit_tokens(remove_stopwords(content)), query)
return rephrased_content, url
return "", url
def fetch_and_extract_content(urls, query):
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
future_to_url = {executor.submit(process_content, url, query): url for url in urls}
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
return all_text_with_urls
def search_brave(query, num_results=5):
brave = Brave(BRAVE_API_KEY)
search_results = brave.search(q=query, count=num_results)
return [url.__str__() for url in search_results.urls]
def generate_report_with_reference(full_data):
"""
Generate HTML report with references and saves pdf report to "generated_pdf_report.pdf"
"""
pdf = FPDF()
with open("report_with_references_template.html") as f: # src/research-pro/app_v1.5_online/
html_template = f.read()
# Loop through each row in your dataset
html_report = ''
idx = 1
for subtopic_data in full_data:
md_report = md_to_html(subtopic_data['md_report'])
# Convert the string representation of a list of tuples back to a list of tuples
references = ast.literal_eval(subtopic_data['text_with_urls'])
collapsible_blocks = []
for ref_idx, reference in enumerate(references):
ref_text = md_to_html(reference[0])
ref_url = reference[1]
urls_html = ''.join(f' {ref_url}')
collapsible_block = '''
{}Reference {}: {}
{}