# !pip install mistune import mistune from mistune.plugins.table import table from jinja2 import Template import re import os def md_to_html(md_text): renderer = mistune.HTMLRenderer() markdown_renderer = mistune.Markdown(renderer, plugins=[table]) html_content = markdown_renderer(md_text) return html_content.replace('\n', '') ####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------#### from datetime import datetime import psycopg2 from dotenv import load_dotenv, find_dotenv # Load environment variables from .env file load_dotenv("keys.env") TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') BRAVE_API_KEY = os.getenv('BRAVE_API_KEY') GROQ_API_KEY = os.getenv("GROQ_API_KEY") HELICON_API_KEY = os.getenv("HELICON_API_KEY") SUPABASE_USER = os.environ['SUPABASE_USER'] SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD'] def insert_data(user_id, user_query, subtopic_query, response, html_report): # Connect to your database conn = psycopg2.connect( dbname="postgres", user=SUPABASE_USER, password=SUPABASE_PASSWORD, host="aws-0-us-west-1.pooler.supabase.com", port="5432" ) cur = conn.cursor() insert_query = """ INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at) VALUES (%s, %s, %s, %s, %s, %s); """ cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now())) conn.commit() cur.close() conn.close() ####-----------------------------------------------------END----------------------------------------------------------#### import ast from fpdf import FPDF import re import pandas as pd import nltk import requests import json from retry import retry from concurrent.futures import ThreadPoolExecutor, as_completed from bs4 import BeautifulSoup from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from brave import Brave from fuzzy_json import loads from half_json.core import JSONFixer from openai import OpenAI llm_default_small = "llama3-8b-8192" llm_default_medium = "llama3-70b-8192" SysPromptJson = "You are now in the role of an expert AI who can extract structured information from user request. Both key and value pairs must be in double quotes. You must respond ONLY with a valid JSON file. Do not add any additional comments." SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments." SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments." import tiktoken # Used to limit tokens encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better def limit_tokens(input_string, token_limit=8000): """ Limit tokens sent to the model """ return encoding.decode(encoding.encode(input_string)[:token_limit]) def together_response(message, model=llm_default_small, SysPrompt = SysPromptDefault,temperature=0.2): client = OpenAI( api_key=GROQ_API_KEY, base_url="https://gateway.hconeai.com/openai/v1", default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}", "Helicone-Target-Url": "https://api.groq.com" } ) messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}] response = client.chat.completions.create( model=model, messages=messages, temperature=temperature, ) return response.choices[0].message.content def json_from_text(text): """ Extracts JSON from text using regex and fuzzy JSON loading. """ match = re.search(r'\{[\s\S]*\}', text) if match: json_out = match.group(0) else: json_out = text try: # Using fuzzy json loader return loads(json_out) except Exception: # Using JSON fixer/ Fixes even half json/ Remove if you need an exception fix_json = JSONFixer() return loads(fix_json.fix(json_out).line) def remove_stopwords(text): stop_words = set(stopwords.words('english')) words = word_tokenize(text) filtered_text = [word for word in words if word.lower() not in stop_words] return ' '.join(filtered_text) def rephrase_content(content, query): return together_response(f"You are an information retriever and summarizer,ignore everything you know, return only the\ factual information regarding the query: {{{query}}} into a maximum of {500} words. Output should be concise chunks of \ paragraphs or tables or both, ignore links, using the scraped context:{{{content}}}") class Scraper: def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"): self.session = requests.Session() self.session.headers.update({"User-Agent": user_agent}) @retry(tries=3, delay=1) def fetch_content(self, url): try: response = self.session.get(url, timeout=2) if response.status_code == 200: return response.text except requests.exceptions.RequestException as e: print(f"Error fetching page content for {url}: {e}") return None def extract_main_content(html): if html: plain_text = "" soup = BeautifulSoup(html, 'lxml') for element in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'table']): plain_text += element.get_text(separator=" ", strip=True) + "\n" return plain_text return "" def process_content(url, query): scraper = Scraper() html_content = scraper.fetch_content(url) if html_content: content = extract_main_content(html_content) if content: rephrased_content = rephrase_content(limit_tokens(remove_stopwords(content)), query) return rephrased_content, url return "", url def fetch_and_extract_content(urls, query): with ThreadPoolExecutor(max_workers=len(urls)) as executor: future_to_url = {executor.submit(process_content, url, query): url for url in urls} all_text_with_urls = [future.result() for future in as_completed(future_to_url)] return all_text_with_urls def search_brave(query, num_results=5): brave = Brave(BRAVE_API_KEY) search_results = brave.search(q=query, count=num_results) return [url.__str__() for url in search_results.urls] def generate_report_with_reference(full_data): """ Generate HTML report with references and saves pdf report to "generated_pdf_report.pdf" """ pdf = FPDF() with open("report_with_references_template.html") as f: # src/research-pro/app_v1.5_online/ html_template = f.read() # Loop through each row in your dataset html_report = '' idx = 1 for subtopic_data in full_data: md_report = md_to_html(subtopic_data['md_report']) # Convert the string representation of a list of tuples back to a list of tuples references = ast.literal_eval(subtopic_data['text_with_urls']) collapsible_blocks = [] for ref_idx, reference in enumerate(references): ref_text = md_to_html(reference[0]) ref_url = reference[1] urls_html = ''.join(f' {ref_url}') collapsible_block = '''
Reference {}: {}

{}

'''.format(ref_idx+1, urls_html, ref_text, urls_html) collapsible_blocks.append(collapsible_block) references_html = '\n'.join(collapsible_blocks) template = Template(html_template) html_page = template.render(md_report=md_report, references=references_html) pdf.add_page() pdf_report = f"

Report {idx}

"+md_report+f"

References for Report {idx}

"+references_html pdf.write_html(pdf_report.encode('ascii', 'ignore').decode('ascii')) # Filter non-asci characters html_report += html_page idx+=1 pdf.output("generated_pdf_report.pdf") return html_report def write_dataframes_to_excel(dataframes_list, filename): """ input: [df_list1, df_list2, ..] saves filename.xlsx """ try: with pd.ExcelWriter(filename, engine="openpyxl") as writer: for idx, dataframes in enumerate(dataframes_list): startrow = 0 for idx2, df in enumerate(dataframes): df.to_excel(writer, sheet_name=f"Sheet{idx+1}", startrow=startrow, index=False) startrow += len(df) + 2 except: # Empty dataframe due to no tables found, file is not written pass def extract_tables_from_html(html_file): """ input: html_file output: [df1,df2,df3,..] """ # Initialize an empty list to store the dataframes dataframes = [] # Open the HTML file and parse it with BeautifulSoup soup = BeautifulSoup(html_file, 'html.parser') # Find all the tables in the HTML file tables = soup.find_all('table') # Iterate through each table for table in tables: # Extract the table headers headers = [th.text for th in table.find_all('th')] # Extract the table data rows = table.find_all('tr') data = [] for row in rows: row_data = [td.text for td in row.find_all('td')] data.append(row_data) # Create a dataframe from the headers and data df = pd.DataFrame(data, columns=headers) # Append the dataframe to the list of dataframes dataframes.append(df) # Return the list of dataframes return dataframes