from transformers import AutoTokenizer, MistralForCausalLM import torch import gradio as gr import random from textwrap import wrap import random # Functions to Wrap the Prompt Correctly def wrap_text(text, width=90): lines = text.split('\n') wrapped_lines = [textwrap.fill(line, width=width) for line in lines] wrapped_text = '\n'.join(wrapped_lines) return wrapped_text def multimodal_prompt(input_text, system_prompt="", max_length=512): """ Generates text using a large language model, given a prompt and a device. Args: input_text: The input text to generate a response for. system_prompt: Optional system prompt. max_length: Maximum length of the generated text. Returns: A string containing the generated text. """ # Modify the input text to include the desired format formatted_input = f"""[INST]{input_text}[/INST]""" # Encode the input text encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) # Generate a response using the model output = model.generate( **model_inputs, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, pad_token_id=model.config.eos_token_id, temperature=0.1, do_sample=True ) # Decode the response response_text = tokenizer.decode(output[0], skip_special_tokens=True) return response_text # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Use the base model's ID base_model_id = "mistralai/Mistral-7B-v0.1" model_directory = "Tonic/mistralmed" # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left") # tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' # Specify the configuration class for the model #model_config = AutoConfig.from_pretrained(base_model_id) # Load the PEFT model with the specified configuration #peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config) # Load the PEFT model peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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") peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True) peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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") class ChatBot: def __init__(self): self.history = [] def predict(self, input_text): # Encode user input user_input_ids = tokenizer.encode(input_text, return_tensors="pt") # Concatenate the user input with chat history if len(self.history) > 0: chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1) else: chat_history_ids = user_input_ids # Generate a response using the PEFT model response = peft_model.generate(input_ids=chat_history_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) # Update chat history self.history = chat_history_ids # Decode and return the response response_text = tokenizer.decode(response[0], skip_special_tokens=True) return response_text bot = ChatBot() title = "👋🏻Welcome to Tonic's MistralMed Chat🚀" description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together." examples = [["What is the boiling point of nitrogen?"]] iface = gr.Interface( fn=bot.predict, title=title, description=description, examples=examples, inputs="text", outputs="text", theme="ParityError/Anime" ) iface.launch()