from fastai.vision.all import * import gradio as gr def greet(name): return "Hello " + name + "!!" learn = load_learner("model-v7.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} examples = [ "a2_b_m.jpg", "a2_coeur_lyon.jpg", "gzup_america.jpg", "gzup_gameboy.jpg", "pa_425.jpg", "pa_1341.jpg", "stork_music.jpg", "stork_prince.jpg", ] DESCRIPTION = """ Street art deep learning model. It's trained to recognize the style of the following artists active in Paris: [A2](https://a2-streetart.com/), [gzup](https://www.gzup.fr/in-the-streets/), [invader](https://www.instagram.com/invaderwashere), [stork](https://www.instagram.com/stork_pixelart/). For more AI experiments check out my [newsletter](https://newsletter.pnote.eu) 💫. """ gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), examples=examples, title="Art reco, recognizer of street art", description=DESCRIPTION ).launch(share=True)