import torch from torch import nn from torch.nn import functional as F import modules import attentions from torch.nn import Conv1d, ConvTranspose1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from commons import init_weights, get_padding import torchaudio from einops import rearrange import transformers import math from styleencoder import StyleEncoder import commons from alias_free_torch import * import activations class Wav2vec2(torch.nn.Module): def __init__(self, layer=7, w2v='mms'): """we use the intermediate features of mms-300m. More specifically, we used the output from the 7th layer of the 24-layer transformer encoder. """ super().__init__() if w2v == 'mms': self.wav2vec2 = transformers.Wav2Vec2ForPreTraining.from_pretrained("facebook/mms-300m") else: self.wav2vec2 = transformers.Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-xls-r-300m") for param in self.wav2vec2.parameters(): param.requires_grad = False param.grad = None self.wav2vec2.eval() self.feature_layer = layer @torch.no_grad() def forward(self, x): """ Args: x: torch.Tensor of shape (B x t) Returns: y: torch.Tensor of shape(B x C x t) """ outputs = self.wav2vec2(x.squeeze(1), output_hidden_states=True) y = outputs.hidden_states[self.feature_layer] # B x t x C(1024) y = y.permute((0, 2, 1)) # B x t x C -> B x C x t return y class ResidualCouplingBlock_Transformer(nn.Module): def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers=3, n_flows=4, gin_channels=0): super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.cond_block = torch.nn.Sequential(torch.nn.Linear(gin_channels, 4 * hidden_channels), nn.SiLU(), torch.nn.Linear(4 * hidden_channels, hidden_channels)) self.flows = nn.ModuleList() for i in range(n_flows): self.flows.append(modules.ResidualCouplingLayer_Transformer_simple(channels, hidden_channels, kernel_size, dilation_rate, n_layers, mean_only=True)) self.flows.append(modules.Flip()) def forward(self, x, x_mask, g=None, reverse=False): g = self.cond_block(g.squeeze(2)) if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow(x, x_mask, g=g, reverse=reverse) return x class PosteriorAudioEncoder(nn.Module): def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.down_pre = nn.Conv1d(1, 16, 7, 1, padding=3) self.resblocks = nn.ModuleList() downsample_rates = [8,5,4,2] downsample_kernel_sizes = [17, 10, 8, 4] ch = [16, 32, 64, 128, 192] resblock = AMPBlock1 resblock_kernel_sizes = [3,7,11] resblock_dilation_sizes = [[1,3,5], [1,3,5], [1,3,5]] self.num_kernels = 3 self.downs = nn.ModuleList() for i, (u, k) in enumerate(zip(downsample_rates, downsample_kernel_sizes)): self.downs.append(weight_norm( Conv1d(ch[i], ch[i+1], k, u, padding=(k-1)//2))) for i in range(4): for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch[i+1], k, d, activation="snakebeta")) activation_post = activations.SnakeBeta(ch[i+1], alpha_logscale=True) self.activation_post = Activation1d(activation=activation_post) self.conv_post = Conv1d(ch[i+1], hidden_channels, 7, 1, padding=3) self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) self.proj = nn.Conv1d(hidden_channels*2, out_channels * 2, 1) def forward(self, x, x_audio, x_mask, g=None): x_audio = self.down_pre(x_audio) for i in range(4): x_audio = self.downs[i](x_audio) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x_audio) else: xs += self.resblocks[i*self.num_kernels+j](x_audio) x_audio = xs / self.num_kernels x_audio = self.activation_post(x_audio) x_audio = self.conv_post(x_audio) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) x_audio = x_audio * x_mask x = torch.cat([x, x_audio], dim=1) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs class PosteriorSFEncoder(nn.Module): def __init__(self, src_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0): super().__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre_source = nn.Conv1d(src_channels, hidden_channels, 1) self.pre_filter = nn.Conv1d(1, hidden_channels, kernel_size=9, stride=4, padding=4) self.source_enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers//2, gin_channels=gin_channels) self.filter_enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers//2, gin_channels=gin_channels) self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers//2, gin_channels=gin_channels) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x_src, x_ftr, x_mask, g=None): x_src = self.pre_source(x_src) * x_mask x_ftr = self.pre_filter(x_ftr) * x_mask x_src = self.source_enc(x_src, x_mask, g=g) x_ftr = self.filter_enc(x_ftr, x_mask, g=g) x = self.enc(x_src+x_ftr, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs class MelDecoder(nn.Module): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, mel_size=20, gin_channels=0): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.conv_pre = Conv1d(hidden_channels, hidden_channels, 3, 1, padding=1) self.encoder = attentions.Encoder( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) self.proj= nn.Conv1d(hidden_channels, mel_size, 1, bias=False) if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, hidden_channels, 1) def forward(self, x, x_mask, g=None): x = self.conv_pre(x*x_mask) if g is not None: x = x + self.cond(g) x = self.encoder(x * x_mask, x_mask) x = self.proj(x) * x_mask return x class SourceNetwork(nn.Module): def __init__(self, upsample_initial_channel=256): super().__init__() resblock_kernel_sizes = [3,5,7] upsample_rates = [2,2] initial_channel = 192 upsample_initial_channel = upsample_initial_channel upsample_kernel_sizes = [4,4] resblock_dilation_sizes = [[1,3,5], [1,3,5], [1,3,5]] self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)) resblock = AMPBlock1 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d, activation="snakebeta")) activation_post = activations.SnakeBeta(ch, alpha_logscale=True) self.activation_post = Activation1d(activation=activation_post) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.cond = Conv1d(256, upsample_initial_channel, 1) self.ups.apply(init_weights) def forward(self, x, g): x = self.conv_pre(x) + self.cond(g) for i in range(self.num_upsamples): x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = self.activation_post(x) ## Predictor x_ = self.conv_post(x) return x, x_ def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() class DBlock(nn.Module): def __init__(self, input_size, hidden_size, factor): super().__init__() self.factor = factor self.residual_dense = weight_norm(Conv1d(input_size, hidden_size, 1)) self.conv = nn.ModuleList([ weight_norm(Conv1d(input_size, hidden_size, 3, dilation=1, padding=1)), weight_norm(Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2)), weight_norm(Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4)), ]) self.conv.apply(init_weights) def forward(self, x): size = x.shape[-1] // self.factor residual = self.residual_dense(x) residual = F.interpolate(residual, size=size) x = F.interpolate(x, size=size) for layer in self.conv: x = F.leaky_relu(x, modules.LRELU_SLOPE) x = layer(x) return x + residual def remove_weight_norm(self): for l in self.conv: remove_weight_norm(l) class AMPBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): super(AMPBlock1, self).__init__() self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers self.activations = nn.ModuleList([ Activation1d( activation=activations.SnakeBeta(channels, alpha_logscale=True)) for _ in range(self.num_layers) ]) def forward(self, x): acts1, acts2 = self.activations[::2], self.activations[1::2] for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): xt = a1(x) xt = c1(xt) xt = a2(xt) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class Generator(torch.nn.Module): def __init__(self, initial_channel, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=256): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)) resblock = AMPBlock1 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d, activation="snakebeta")) activation_post = activations.SnakeBeta(ch, alpha_logscale=True) self.activation_post = Activation1d(activation=activation_post) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) self.downs = DBlock(upsample_initial_channel//8, upsample_initial_channel, 4) self.proj = Conv1d(upsample_initial_channel//8, upsample_initial_channel//2, 7, 1, padding=3) def forward(self, x, pitch, g=None): x = self.conv_pre(x) + self.downs(pitch) + self.cond(g) for i in range(self.num_upsamples): x = self.ups[i](x) if i == 0: pitch = self.proj(pitch) x = x + pitch xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = self.activation_post(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() for l in self.downs: l.remove_weight_norm() remove_weight_norm(self.conv_pre) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorR(torch.nn.Module): def __init__(self, resolution, use_spectral_norm=False): super(DiscriminatorR, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm n_fft, hop_length, win_length = resolution self.spec_transform = torchaudio.transforms.Spectrogram( n_fft=n_fft, hop_length=hop_length, win_length=win_length, window_fn=torch.hann_window, normalized=True, center=False, pad_mode=None, power=None) self.convs = nn.ModuleList([ norm_f(nn.Conv2d(2, 32, (3, 9), padding=(1, 4))), norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))), norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(2,1), padding=(2, 4))), norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), dilation=(4,1), padding=(4, 4))), norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))), ]) self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1))) def forward(self, y): fmap = [] x = self.spec_transform(y) # [B, 2, Freq, Frames, 2] x = torch.cat([x.real, x.imag], dim=1) x = rearrange(x, 'b c w t -> b c t w') for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(MultiPeriodDiscriminator, self).__init__() periods = [2,3,5,7,11] resolutions = [[2048, 512, 2048], [1024, 256, 1024], [512, 128, 512], [256, 64, 256], [128, 32, 128]] discs = [DiscriminatorR(resolutions[i], use_spectral_norm=use_spectral_norm) for i in range(len(resolutions))] discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] self.discriminators = nn.ModuleList(discs) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class SynthesizerTrn(nn.Module): """ Synthesizer for Training """ def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=256, prosody_size=20, uncond_ratio=0., cfg=False, **kwargs): super().__init__() self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.mel_size = prosody_size self.enc_p_l = PosteriorSFEncoder(1024, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) self.flow_l = ResidualCouplingBlock_Transformer(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels) self.enc_p = PosteriorSFEncoder(1024, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) self.enc_q = PosteriorAudioEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) self.flow = ResidualCouplingBlock_Transformer(inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels) self.mel_decoder = MelDecoder(inter_channels, filter_channels, n_heads=2, n_layers=2, kernel_size=5, p_dropout=0.1, mel_size=self.mel_size, gin_channels=gin_channels) self.dec = Generator(inter_channels, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) self.sn = SourceNetwork(upsample_initial_channel//2) self.emb_g = StyleEncoder(in_dim=80, hidden_dim=256, out_dim=gin_channels) if cfg: self.emb = torch.nn.Embedding(1, 256) torch.nn.init.normal_(self.emb.weight, 0.0, 256 ** -0.5) self.null = torch.LongTensor([0]).cuda() self.uncond_ratio = uncond_ratio self.cfg = cfg @torch.no_grad() def infer(self, x_mel, w2v, length, f0): x_mask = torch.unsqueeze(commons.sequence_mask(length, x_mel.size(2)), 1).to(x_mel.dtype) # Speaker embedding from mel (Style Encoder) g = self.emb_g(x_mel, x_mask).unsqueeze(-1) z, _, _ = self.enc_p_l(w2v, f0, x_mask, g=g) z = self.flow_l(z, x_mask, g=g, reverse=True) z = self.flow(z, x_mask, g=g, reverse=True) e, e_ = self.sn(z, g) o = self.dec(z, e, g=g) return o, e_ @torch.no_grad() def voice_conversion(self, src, src_length, trg_mel, trg_length, f0, noise_scale = 0.333, uncond=False): trg_mask = torch.unsqueeze(commons.sequence_mask(trg_length, trg_mel.size(2)), 1).to(trg_mel.dtype) g = self.emb_g(trg_mel, trg_mask).unsqueeze(-1) y_mask = torch.unsqueeze(commons.sequence_mask(src_length, src.size(2)), 1).to(trg_mel.dtype) z, m_p, logs_p = self.enc_p_l(src, f0, y_mask, g=g) z = (m_p + torch.randn_like(m_p) * torch.exp(logs_p)*noise_scale) * y_mask z = self.flow_l(z, y_mask, g=g, reverse=True) z = self.flow(z, y_mask, g=g, reverse=True) if uncond: null_emb = self.emb(self.null) * math.sqrt(256) g = null_emb.unsqueeze(-1) e, _ = self.sn(z, g) o = self.dec(z, e, g=g) return o @torch.no_grad() def voice_conversion_noise_control(self, src, src_length, trg_mel, trg_length, f0, noise_scale = 0.333, uncond=False, denoise_ratio = 0): trg_mask = torch.unsqueeze(commons.sequence_mask(trg_length, trg_mel.size(2)), 1).to(trg_mel.dtype) g = self.emb_g(trg_mel, trg_mask).unsqueeze(-1) g_org, g_denoise = g[:1, :, :], g[1:, :, :] g_interpolation = (1-denoise_ratio)*g_org + denoise_ratio*g_denoise y_mask = torch.unsqueeze(commons.sequence_mask(src_length, src.size(2)), 1).to(trg_mel.dtype) z, m_p, logs_p = self.enc_p_l(src, f0, y_mask, g=g_interpolation) z = (m_p + torch.randn_like(m_p) * torch.exp(logs_p)*noise_scale) * y_mask z = self.flow_l(z, y_mask, g=g_interpolation, reverse=True) z = self.flow(z, y_mask, g=g_interpolation, reverse=True) if uncond: null_emb = self.emb(self.null) * math.sqrt(256) g = null_emb.unsqueeze(-1) e, _ = self.sn(z, g_interpolation) o = self.dec(z, e, g=g_interpolation) return o @torch.no_grad() def f0_extraction(self, x_linear, x_mel, length, x_audio, noise_scale = 0.333): x_mask = torch.unsqueeze(commons.sequence_mask(length, x_mel.size(2)), 1).to(x_mel.dtype) # Speaker embedding from mel (Style Encoder) g = self.emb_g(x_mel, x_mask).unsqueeze(-1) # posterior encoder from linear spec. _, m_q, logs_q= self.enc_q(x_linear, x_audio, x_mask, g=g) z = (m_q + torch.randn_like(m_q) * torch.exp(logs_q)*noise_scale) # Source Networks _, e_ = self.sn(z, g) return e_