from transformers import BlipProcessor, BlipForConditionalGeneration from langchain.chains import LLMChain from langchain.schema import BaseOutputParser from PIL import Image import torch # Define a simple Output Parser class CaptionParser(BaseOutputParser): def parse(self, text: str): return text.strip() # LangChain-compatible VLM wrapper class BLIPImageCaptioning: def __init__(self): self.device = "cuda" if torch.cuda.is_available() else "cpu" self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base", use_auth_token=None) self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", use_auth_token=None).to(self.device) def predict(self, image_path: str) -> str: raw_image = Image.open(image_path).convert('RGB') inputs = self.processor(raw_image, return_tensors="pt").to(self.device) out = self.model.generate(**inputs) caption = self.processor.decode(out[0], skip_special_tokens=True) return caption # Use the BLIP model via LangChain class ImageCaptionChain: def __init__(self): self.captioner = BLIPImageCaptioning() self.output_parser = CaptionParser() def run(self, image_path: str): caption = self.captioner.predict(image_path) return self.output_parser.parse(caption) # ----------- Run Example ------------- if __name__ == "__main__": image_path = r"images\sample.jpg" # Replace with your image path chain = ImageCaptionChain() caption = chain.run(image_path) print("Generated Caption:", caption)