import argparse from contextlib import nullcontext import safetensors.torch import torch from accelerate import init_empty_weights from huggingface_hub import hf_hub_download from diffusers import AutoencoderKL, FluxTransformer2DModel from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint from diffusers.utils.import_utils import is_accelerate_available """ # Transformer python scripts/convert_flux_to_diffusers.py \ --original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \ --filename "flux1-schnell.sft" --output_path "flux-schnell" \ --transformer """ """ # VAE python scripts/convert_flux_to_diffusers.py \ --original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \ --filename "ae.sft" --output_path "flux-schnell" \ --vae """ CTX = init_empty_weights if is_accelerate_available else nullcontext parser = argparse.ArgumentParser() parser.add_argument("--original_state_dict_repo_id", default=None, type=str) parser.add_argument("--filename", default="flux.safetensors", type=str) parser.add_argument("--checkpoint_path", default=None, type=str) parser.add_argument("--vae", action="store_true") parser.add_argument("--transformer", action="store_true") parser.add_argument("--output_path", type=str) parser.add_argument("--dtype", type=str, default="bf16") args = parser.parse_args() dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float32 def load_original_checkpoint(args): if args.original_state_dict_repo_id is not None: ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename) elif args.checkpoint_path is not None: ckpt_path = args.checkpoint_path else: raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`") original_state_dict = safetensors.torch.load_file(ckpt_path) return original_state_dict # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale; # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation def swap_scale_shift(weight): shift, scale = weight.chunk(2, dim=0) new_weight = torch.cat([scale, shift], dim=0) return new_weight def convert_flux_transformer_checkpoint_to_diffusers( original_state_dict, num_layers, num_single_layers, inner_dim, mlp_ratio=4.0 ): converted_state_dict = {} ## time_text_embed.timestep_embedder <- time_in converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop( "time_in.in_layer.weight" ) converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop( "time_in.in_layer.bias" ) converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop( "time_in.out_layer.weight" ) converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop( "time_in.out_layer.bias" ) ## time_text_embed.text_embedder <- vector_in converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop( "vector_in.in_layer.weight" ) converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop( "vector_in.in_layer.bias" ) converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop( "vector_in.out_layer.weight" ) converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop( "vector_in.out_layer.bias" ) # guidance has_guidance = any("guidance" in k for k in original_state_dict) if has_guidance: converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = original_state_dict.pop( "guidance_in.in_layer.weight" ) converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = original_state_dict.pop( "guidance_in.in_layer.bias" ) converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = original_state_dict.pop( "guidance_in.out_layer.weight" ) converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = original_state_dict.pop( "guidance_in.out_layer.bias" ) # context_embedder converted_state_dict["context_embedder.weight"] = original_state_dict.pop("txt_in.weight") converted_state_dict["context_embedder.bias"] = original_state_dict.pop("txt_in.bias") # x_embedder converted_state_dict["x_embedder.weight"] = original_state_dict.pop("img_in.weight") converted_state_dict["x_embedder.bias"] = original_state_dict.pop("img_in.bias") # double transformer blocks for i in range(num_layers): block_prefix = f"transformer_blocks.{i}." # norms. ## norm1 converted_state_dict[f"{block_prefix}norm1.linear.weight"] = original_state_dict.pop( f"double_blocks.{i}.img_mod.lin.weight" ) converted_state_dict[f"{block_prefix}norm1.linear.bias"] = original_state_dict.pop( f"double_blocks.{i}.img_mod.lin.bias" ) ## norm1_context converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = original_state_dict.pop( f"double_blocks.{i}.txt_mod.lin.weight" ) converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = original_state_dict.pop( f"double_blocks.{i}.txt_mod.lin.bias" ) # Q, K, V sample_q, sample_k, sample_v = torch.chunk( original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0 ) context_q, context_k, context_v = torch.chunk( original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0 ) sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0 ) context_q_bias, context_k_bias, context_v_bias = torch.chunk( original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0 ) converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q]) converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias]) converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k]) converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias]) converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v]) converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias]) converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q]) converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias]) converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k]) converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias]) converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v]) converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias]) # qk_norm converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop( f"double_blocks.{i}.img_attn.norm.query_norm.scale" ) converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop( f"double_blocks.{i}.img_attn.norm.key_norm.scale" ) converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop( f"double_blocks.{i}.txt_attn.norm.query_norm.scale" ) converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop( f"double_blocks.{i}.txt_attn.norm.key_norm.scale" ) # ff img_mlp converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop( f"double_blocks.{i}.img_mlp.0.weight" ) converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop( f"double_blocks.{i}.img_mlp.0.bias" ) converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop( f"double_blocks.{i}.img_mlp.2.weight" ) converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop( f"double_blocks.{i}.img_mlp.2.bias" ) converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = original_state_dict.pop( f"double_blocks.{i}.txt_mlp.0.weight" ) converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = original_state_dict.pop( f"double_blocks.{i}.txt_mlp.0.bias" ) converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = original_state_dict.pop( f"double_blocks.{i}.txt_mlp.2.weight" ) converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = original_state_dict.pop( f"double_blocks.{i}.txt_mlp.2.bias" ) # output projections. converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop( f"double_blocks.{i}.img_attn.proj.weight" ) converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop( f"double_blocks.{i}.img_attn.proj.bias" ) converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = original_state_dict.pop( f"double_blocks.{i}.txt_attn.proj.weight" ) converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = original_state_dict.pop( f"double_blocks.{i}.txt_attn.proj.bias" ) # single transfomer blocks for i in range(num_single_layers): block_prefix = f"single_transformer_blocks.{i}." # norm.linear <- single_blocks.0.modulation.lin converted_state_dict[f"{block_prefix}norm.linear.weight"] = original_state_dict.pop( f"single_blocks.{i}.modulation.lin.weight" ) converted_state_dict[f"{block_prefix}norm.linear.bias"] = original_state_dict.pop( f"single_blocks.{i}.modulation.lin.bias" ) # Q, K, V, mlp mlp_hidden_dim = int(inner_dim * mlp_ratio) split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim) q, k, v, mlp = torch.split(original_state_dict.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0) q_bias, k_bias, v_bias, mlp_bias = torch.split( original_state_dict.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0 ) converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q]) converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias]) converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k]) converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias]) converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v]) converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias]) converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp]) converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias]) # qk norm converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop( f"single_blocks.{i}.norm.query_norm.scale" ) converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop( f"single_blocks.{i}.norm.key_norm.scale" ) # output projections. converted_state_dict[f"{block_prefix}proj_out.weight"] = original_state_dict.pop( f"single_blocks.{i}.linear2.weight" ) converted_state_dict[f"{block_prefix}proj_out.bias"] = original_state_dict.pop( f"single_blocks.{i}.linear2.bias" ) converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight") converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias") converted_state_dict["norm_out.linear.weight"] = swap_scale_shift( original_state_dict.pop("final_layer.adaLN_modulation.1.weight") ) converted_state_dict["norm_out.linear.bias"] = swap_scale_shift( original_state_dict.pop("final_layer.adaLN_modulation.1.bias") ) return converted_state_dict def main(args): original_ckpt = load_original_checkpoint(args) has_guidance = any("guidance" in k for k in original_ckpt) if args.transformer: num_layers = 19 num_single_layers = 38 inner_dim = 3072 mlp_ratio = 4.0 converted_transformer_state_dict = convert_flux_transformer_checkpoint_to_diffusers( original_ckpt, num_layers, num_single_layers, inner_dim, mlp_ratio=mlp_ratio ) transformer = FluxTransformer2DModel(guidance_embeds=has_guidance) transformer.load_state_dict(converted_transformer_state_dict, strict=True) print( f"Saving Flux Transformer in Diffusers format. Variant: {'guidance-distilled' if has_guidance else 'timestep-distilled'}" ) transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer") if args.vae: config = AutoencoderKL.load_config("stabilityai/stable-diffusion-3-medium-diffusers", subfolder="vae") vae = AutoencoderKL.from_config(config, scaling_factor=0.3611, shift_factor=0.1159).to(torch.bfloat16) converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config) vae.load_state_dict(converted_vae_state_dict, strict=True) vae.to(dtype).save_pretrained(f"{args.output_path}/vae") if __name__ == "__main__": main(args)