# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation # More information about the method can be found at https://marigoldmonodepth.github.io # -------------------------------------------------------------------------- from __future__ import annotations import functools import os import tempfile import warnings import zipfile from io import BytesIO import diffusers import gradio as gr import imageio as imageio import numpy as np import spaces import torch as torch from PIL import Image from diffusers import MarigoldDepthPipeline from gradio_imageslider import ImageSlider from huggingface_hub import login from tqdm import tqdm from extrude import extrude_depth_3d from gradio_patches.examples import Examples from gradio_patches.flagging import FlagMethod, HuggingFaceDatasetSaver warnings.filterwarnings( "ignore", message=".*LoginButton created outside of a Blocks context.*" ) default_seed = 2024 default_batch_size = 4 default_image_num_inference_steps = 4 default_image_ensemble_size = 1 default_image_processing_resolution = 768 default_image_reproducuble = True default_video_depth_latent_init_strength = 0.1 default_video_num_inference_steps = 1 default_video_ensemble_size = 1 default_video_processing_resolution = 768 default_video_out_max_frames = 450 default_bas_plane_near = 0.0 default_bas_plane_far = 1.0 default_bas_embossing = 20 default_bas_num_inference_steps = 4 default_bas_ensemble_size = 1 default_bas_processing_resolution = 768 default_bas_size_longest_px = 512 default_bas_size_longest_cm = 10 default_bas_filter_size = 3 default_bas_frame_thickness = 5 default_bas_frame_near = 1 default_bas_frame_far = 1 default_share_always_show_hf_logout_btn = True default_share_always_show_accordion = False def process_image_check(path_input): if path_input is None: raise gr.Error( "Missing image in the first pane: upload a file or use one from the gallery below." ) def process_image( pipe, path_input, num_inference_steps=default_image_num_inference_steps, ensemble_size=default_image_ensemble_size, processing_resolution=default_image_processing_resolution, ): name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing image {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") input_image = Image.open(path_input) generator = torch.Generator(device=pipe.device).manual_seed(default_seed) pipe_out = pipe( input_image, num_inference_steps=num_inference_steps, ensemble_size=ensemble_size, processing_resolution=processing_resolution, batch_size=1 if processing_resolution == 0 else default_batch_size, generator=generator, ) depth_pred = pipe_out.prediction[0, :, :, 0] depth_colored = pipe.image_processor.visualize_depth(pipe_out.prediction)[0] depth_16bit = pipe.image_processor.export_depth_to_16bit_png(pipe_out.prediction)[0] np.save(path_out_fp32, depth_pred) depth_16bit.save(path_out_16bit) depth_colored.save(path_out_vis) return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) def process_video( pipe, path_input, depth_latent_init_strength=default_video_depth_latent_init_strength, num_inference_steps=default_video_num_inference_steps, ensemble_size=default_video_ensemble_size, processing_resolution=default_video_processing_resolution, out_max_frames=default_video_out_max_frames, progress=gr.Progress(), ): if path_input is None: raise gr.Error( "Missing video in the first pane: upload a file or use one from the gallery below." ) name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing video {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip") generator = torch.Generator(device=pipe.device).manual_seed(default_seed) reader, writer, zipf = None, None, None try: pipe.vae, pipe.vae_tiny = pipe.vae_tiny, pipe.vae reader = imageio.get_reader(path_input) meta_data = reader.get_meta_data() fps = meta_data["fps"] size = meta_data["size"] max_orig = max(size) duration_sec = meta_data["duration"] total_frames = int(fps * duration_sec) out_duration_sec = out_max_frames / fps if duration_sec > out_duration_sec: gr.Warning( f"Only the first ~{int(out_duration_sec)} seconds will be processed; " f"use alternative setups such as ComfyUI Marigold node for full processing" ) writer = imageio.get_writer(path_out_vis, fps=fps) zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED) last_frame_latent = None latent_common = torch.randn( ( 1, 4, (768 * size[1] + 7 * max_orig) // (8 * max_orig), (768 * size[0] + 7 * max_orig) // (8 * max_orig), ), generator=generator, device=pipe.device, dtype=torch.float16, ) out_frame_id = 0 pbar = tqdm(desc="Processing Video", total=min(out_max_frames, total_frames)) for frame_id, frame in enumerate(reader): out_frame_id += 1 pbar.update(1) if out_frame_id > out_max_frames: break frame_pil = Image.fromarray(frame) latents = latent_common if last_frame_latent is not None: assert ( last_frame_latent.shape == latent_common.shape ), f"{last_frame_latent.shape}, {latent_common.shape}" latents = ( 1 - depth_latent_init_strength ) * latents + depth_latent_init_strength * last_frame_latent pipe_out = pipe( frame_pil, num_inference_steps=num_inference_steps, ensemble_size=ensemble_size, processing_resolution=processing_resolution, match_input_resolution=False, batch_size=1, latents=latents, output_latent=True, ) last_frame_latent = pipe_out.latent processed_frame = pipe.image_processor.visualize_depth( # noqa pipe_out.prediction )[0] processed_frame = imageio.core.util.Array(np.array(processed_frame)) writer.append_data(processed_frame) archive_path = os.path.join( f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png" ) img_byte_arr = BytesIO() processed_frame = pipe.image_processor.export_depth_to_16bit_png( pipe_out.prediction )[0] processed_frame.save(img_byte_arr, format="png") img_byte_arr.seek(0) zipf.writestr(archive_path, img_byte_arr.read()) finally: if zipf is not None: zipf.close() if writer is not None: writer.close() if reader is not None: reader.close() pipe.vae, pipe.vae_tiny = pipe.vae_tiny, pipe.vae return ( path_out_vis, [path_out_vis, path_out_16bit], ) def process_bas( pipe, path_input, plane_near=default_bas_plane_near, plane_far=default_bas_plane_far, embossing=default_bas_embossing, num_inference_steps=default_bas_num_inference_steps, ensemble_size=default_bas_ensemble_size, processing_resolution=default_bas_processing_resolution, size_longest_px=default_bas_size_longest_px, size_longest_cm=default_bas_size_longest_cm, filter_size=default_bas_filter_size, frame_thickness=default_bas_frame_thickness, frame_near=default_bas_frame_near, frame_far=default_bas_frame_far, ): if path_input is None: raise gr.Error( "Missing image in the first pane: upload a file or use one from the gallery below." ) if plane_near >= plane_far: raise gr.Error("NEAR plane must have a value smaller than the FAR plane") name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing bas-relief {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() input_image = Image.open(path_input) generator = torch.Generator(device=pipe.device).manual_seed(default_seed) pipe_out = pipe( input_image, num_inference_steps=num_inference_steps, ensemble_size=ensemble_size, processing_resolution=processing_resolution, generator=generator, ) depth_pred = pipe_out.prediction[0, :, :, 0] * 65535 def _process_3d( size_longest_px, filter_size, vertex_colors, scene_lights, output_model_scale=None, prepare_for_3d_printing=False, zip_outputs=False, ): image_rgb_w, image_rgb_h = input_image.width, input_image.height image_rgb_d = max(image_rgb_w, image_rgb_h) image_new_w = size_longest_px * image_rgb_w // image_rgb_d image_new_h = size_longest_px * image_rgb_h // image_rgb_d image_rgb_new = os.path.join( path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}" ) image_depth_new = os.path.join( path_output_dir, f"{name_base}_depth_{size_longest_px}.png" ) input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save( image_rgb_new ) Image.fromarray(depth_pred).convert(mode="F").resize( (image_new_w, image_new_h), Image.BILINEAR ).convert("I").save(image_depth_new) path_glb, path_stl, path_obj = extrude_depth_3d( image_rgb_new, image_depth_new, output_model_scale=( size_longest_cm * 10 if output_model_scale is None else output_model_scale ), filter_size=filter_size, coef_near=plane_near, coef_far=plane_far, emboss=embossing / 100, f_thic=frame_thickness / 100, f_near=frame_near / 100, f_back=frame_far / 100, vertex_colors=vertex_colors, scene_lights=scene_lights, prepare_for_3d_printing=prepare_for_3d_printing, zip_outputs=zip_outputs, ) return path_glb, path_stl, path_obj path_viewer_glb, _, _ = _process_3d( 256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1 ) path_files_glb, path_files_stl, path_files_obj = _process_3d( size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True, zip_outputs=True, ) return path_viewer_glb, [path_files_glb, path_files_stl, path_files_obj] def run_demo_server(pipe, hf_writer=None): process_pipe_image = spaces.GPU(functools.partial(process_image, pipe)) process_pipe_video = spaces.GPU( functools.partial(process_video, pipe), duration=120 ) process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe)) gradio_theme = gr.themes.Default() with gr.Blocks( theme=gradio_theme, title="Marigold-LCM Depth Estimation", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """, head=""" """, ) as demo: if hf_writer is not None: print("Creating login button") share_login_btn = gr.LoginButton(size="sm", scale=1, render=False) print("Created login button") share_login_btn.activate() print("Activated login button") gr.Markdown( """ # Marigold-LCM Depth Estimation
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild. It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step. We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — see the tabs below. Upload your content into the first pane, or click any of the examples below. Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the second pane. To avoid queuing, fork the demo into your profile. The original Marigold demo is also available .
""" ) def get_share_instructions(is_full): out = ( "### Help us improve Marigold! If the output is not what you expected, " "you can help us by sharing it with us privately.\n" ) if is_full: out += ( "1. Sign into your Hugging Face account using the button below.\n" "1. Signing in may reset the demo and results; in that case, process the image again.\n" ) out += "1. Review and agree to the terms of usage and enter an optional message to us.\n" out += "1. Click the 'Share' button to submit the image to us privately.\n" return out def get_share_conditioned_on_login(profile: gr.OAuthProfile | None): state_logged_out = profile is None return get_share_instructions(is_full=state_logged_out), gr.Button( visible=(state_logged_out or default_share_always_show_hf_logout_btn) ) with gr.Tabs(elem_classes=["tabs"]): with gr.Tab("Image"): with gr.Row(): with gr.Column(): image_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): image_submit_btn = gr.Button( value="Compute Depth", variant="primary" ) image_reset_btn = gr.Button(value="Reset") with gr.Accordion("Advanced options", open=False): image_num_inference_steps = gr.Slider( label="Number of denoising steps", minimum=1, maximum=4, step=1, value=default_image_num_inference_steps, ) image_ensemble_size = gr.Slider( label="Ensemble size", minimum=1, maximum=10, step=1, value=default_image_ensemble_size, ) image_processing_resolution = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=default_image_processing_resolution, ) with gr.Column(): image_output_slider = ImageSlider( label="Predicted depth (red-near, blue-far)", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) image_output_files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) if hf_writer is not None: with gr.Accordion( "Feedback", open=False, visible=default_share_always_show_accordion, ) as share_box: share_instructions = gr.Markdown( get_share_instructions(is_full=True), elem_classes="md_feedback", ) share_transfer_of_rights = gr.Checkbox( label="(Optional) I own or hold necessary rights to the submitted image. By " "checking this box, I grant an irrevocable, non-exclusive, transferable, " "royalty-free, worldwide license to use the uploaded image, including for " "publishing, reproducing, and model training. [transfer_of_rights]", scale=1, ) share_content_is_legal = gr.Checkbox( label="By checking this box, I acknowledge that my uploaded content is legal and " "safe, and that I am solely responsible for ensuring it complies with all " "applicable laws and regulations. Additionally, I am aware that my Hugging Face " "username is collected. [content_is_legal]", scale=1, ) share_reason = gr.Textbox( label="(Optional) Reason for feedback", max_lines=1, interactive=True, ) with gr.Row(): share_login_btn.render() share_share_btn = gr.Button( "Share", variant="stop", scale=1 ) Examples( fn=process_pipe_image, examples=[ os.path.join("files", "image", name) for name in [ "arc.jpeg", "berries.jpeg", "butterfly.jpeg", "cat.jpg", "concert.jpeg", "dog.jpeg", "doughnuts.jpeg", "einstein.jpg", "food.jpeg", "glasses.jpeg", "house.jpg", "lake.jpeg", "marigold.jpeg", "portrait_1.jpeg", "portrait_2.jpeg", "pumpkins.jpg", "puzzle.jpeg", "road.jpg", "scientists.jpg", "surfboards.jpeg", "surfer.jpeg", "swings.jpg", "switzerland.jpeg", "teamwork.jpeg", "wave.jpeg", ] ], inputs=[image_input], outputs=[image_output_slider, image_output_files], cache_examples=True, directory_name="examples_image", ) with gr.Tab("Video"): with gr.Row(): with gr.Column(): video_input = gr.Video( label="Input Video", sources=["upload"], ) with gr.Row(): video_submit_btn = gr.Button( value="Compute Depth", variant="primary" ) video_reset_btn = gr.Button(value="Reset") with gr.Column(): video_output_video = gr.Video( label="Output video depth (red-near, blue-far)", interactive=False, ) video_output_files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) Examples( fn=process_pipe_video, examples=[ os.path.join("files", "video", name) for name in [ "cab.mp4", "elephant.mp4", "obama.mp4", ] ], inputs=[video_input], outputs=[video_output_video, video_output_files], cache_examples=True, directory_name="examples_video", ) with gr.Tab("Bas-relief (3D)"): gr.Markdown( """This part of the demo uses Marigold-LCM to create a bas-relief model. The models are watertight, with correct normals, and exported in the STL format, which makes them 3D-printable.
""", ) with gr.Row(): with gr.Column(): bas_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): bas_submit_btn = gr.Button( value="Create 3D", variant="primary" ) bas_reset_btn = gr.Button(value="Reset") with gr.Accordion("3D printing demo: Main options", open=True): bas_plane_near = gr.Slider( label="Relative position of the near plane (between 0 and 1)", minimum=0.0, maximum=1.0, step=0.001, value=default_bas_plane_near, ) bas_plane_far = gr.Slider( label="Relative position of the far plane (between near and 1)", minimum=0.0, maximum=1.0, step=0.001, value=default_bas_plane_far, ) bas_embossing = gr.Slider( label="Embossing level", minimum=0, maximum=100, step=1, value=default_bas_embossing, ) with gr.Accordion( "3D printing demo: Advanced options", open=False ): bas_num_inference_steps = gr.Slider( label="Number of denoising steps", minimum=1, maximum=4, step=1, value=default_bas_num_inference_steps, ) bas_ensemble_size = gr.Slider( label="Ensemble size", minimum=1, maximum=10, step=1, value=default_bas_ensemble_size, ) bas_processing_resolution = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=default_bas_processing_resolution, ) bas_size_longest_px = gr.Slider( label="Size (px) of the longest side", minimum=256, maximum=1024, step=256, value=default_bas_size_longest_px, ) bas_size_longest_cm = gr.Slider( label="Size (cm) of the longest side", minimum=1, maximum=100, step=1, value=default_bas_size_longest_cm, ) bas_filter_size = gr.Slider( label="Size (px) of the smoothing filter", minimum=1, maximum=5, step=2, value=default_bas_filter_size, ) bas_frame_thickness = gr.Slider( label="Frame thickness", minimum=0, maximum=100, step=1, value=default_bas_frame_thickness, ) bas_frame_near = gr.Slider( label="Frame's near plane offset", minimum=-100, maximum=100, step=1, value=default_bas_frame_near, ) bas_frame_far = gr.Slider( label="Frame's far plane offset", minimum=1, maximum=10, step=1, value=default_bas_frame_far, ) with gr.Column(): bas_output_viewer = gr.Model3D( camera_position=(75.0, 90.0, 1.25), elem_classes="viewport", label="3D preview (low-res, relief highlight)", interactive=False, ) bas_output_files = gr.Files( label="3D model outputs (high-res)", elem_id="download", interactive=False, ) Examples( fn=process_pipe_bas, examples=[ [ "files/basrelief/coin.jpg", # input 0.0, # plane_near 0.66, # plane_far 15, # embossing 4, # num_inference_steps 4, # ensemble_size 768, # processing_resolution 512, # size_longest_px 10, # size_longest_cm 3, # filter_size 5, # frame_thickness 0, # frame_near 1, # frame_far ], [ "files/basrelief/einstein.jpg", # input 0.0, # plane_near 0.5, # plane_far 50, # embossing 2, # num_inference_steps 1, # ensemble_size 768, # processing_resolution 512, # size_longest_px 10, # size_longest_cm 3, # filter_size 5, # frame_thickness -25, # frame_near 1, # frame_far ], [ "files/basrelief/food.jpeg", # input 0.0, # plane_near 1.0, # plane_far 20, # embossing 2, # num_inference_steps 4, # ensemble_size 768, # processing_resolution 512, # size_longest_px 10, # size_longest_cm 3, # filter_size 5, # frame_thickness -5, # frame_near 1, # frame_far ], ], inputs=[ bas_input, bas_plane_near, bas_plane_far, bas_embossing, bas_num_inference_steps, bas_ensemble_size, bas_processing_resolution, bas_size_longest_px, bas_size_longest_cm, bas_filter_size, bas_frame_thickness, bas_frame_near, bas_frame_far, ], outputs=[bas_output_viewer, bas_output_files], cache_examples=True, directory_name="examples_bas", ) ### Image tab if hf_writer is not None: image_submit_btn.click( fn=process_image_check, inputs=image_input, outputs=None, preprocess=False, queue=False, ).success( get_share_conditioned_on_login, None, [share_instructions, share_login_btn], queue=False, ).then( lambda: ( gr.Button(value="Share", interactive=True), gr.Accordion(visible=True), False, False, "", ), None, [ share_share_btn, share_box, share_transfer_of_rights, share_content_is_legal, share_reason, ], queue=False, ).then( fn=process_pipe_image, inputs=[ image_input, image_num_inference_steps, image_ensemble_size, image_processing_resolution, ], outputs=[image_output_slider, image_output_files], concurrency_limit=1, ) else: image_submit_btn.click( fn=process_image_check, inputs=image_input, outputs=None, preprocess=False, queue=False, ).success( fn=process_pipe_image, inputs=[ image_input, image_num_inference_steps, image_ensemble_size, image_processing_resolution, ], outputs=[image_output_slider, image_output_files], concurrency_limit=1, ) image_reset_btn.click( fn=lambda: ( None, None, None, default_image_ensemble_size, default_image_num_inference_steps, default_image_processing_resolution, ), inputs=[], outputs=[ image_input, image_output_slider, image_output_files, image_ensemble_size, image_num_inference_steps, image_processing_resolution, ], queue=False, ) if hf_writer is not None: image_reset_btn.click( fn=lambda: ( gr.Button(value="Share", interactive=True), gr.Accordion(visible=default_share_always_show_accordion), ), inputs=[], outputs=[ share_share_btn, share_box, ], queue=False, ) ### Share functionality if hf_writer is not None: share_components = [ image_input, image_num_inference_steps, image_ensemble_size, image_processing_resolution, image_output_slider, share_content_is_legal, share_transfer_of_rights, share_reason, ] hf_writer.setup(share_components, "shared_data") share_callback = FlagMethod(hf_writer, "Share", "", visual_feedback=True) def share_precheck( hf_content_is_legal, image_output_slider, profile: gr.OAuthProfile | None, ): if profile is None: raise gr.Error( "Log into the Space with your Hugging Face account first." ) if image_output_slider is None or image_output_slider[0] is None: raise gr.Error("No output detected; process the image first.") if not hf_content_is_legal: raise gr.Error( "You must consent that the uploaded content is legal." ) return gr.Button(value="Sharing in progress", interactive=False) share_share_btn.click( share_precheck, [share_content_is_legal, image_output_slider], share_share_btn, preprocess=False, queue=False, ).success( share_callback, inputs=share_components, outputs=share_share_btn, preprocess=False, queue=False, ) ### Video tab video_submit_btn.click( fn=process_pipe_video, inputs=[video_input], outputs=[video_output_video, video_output_files], concurrency_limit=1, ) video_reset_btn.click( fn=lambda: (None, None, None), inputs=[], outputs=[video_input, video_output_video, video_output_files], concurrency_limit=1, ) ### Bas-relief tab bas_submit_btn.click( fn=process_pipe_bas, inputs=[ bas_input, bas_plane_near, bas_plane_far, bas_embossing, bas_num_inference_steps, bas_ensemble_size, bas_processing_resolution, bas_size_longest_px, bas_size_longest_cm, bas_filter_size, bas_frame_thickness, bas_frame_near, bas_frame_far, ], outputs=[bas_output_viewer, bas_output_files], concurrency_limit=1, ) bas_reset_btn.click( fn=lambda: ( gr.Button(interactive=True), None, None, None, default_bas_plane_near, default_bas_plane_far, default_bas_embossing, default_bas_num_inference_steps, default_bas_ensemble_size, default_bas_processing_resolution, default_bas_size_longest_px, default_bas_size_longest_cm, default_bas_filter_size, default_bas_frame_thickness, default_bas_frame_near, default_bas_frame_far, ), inputs=[], outputs=[ bas_submit_btn, bas_input, bas_output_viewer, bas_output_files, bas_plane_near, bas_plane_far, bas_embossing, bas_num_inference_steps, bas_ensemble_size, bas_processing_resolution, bas_size_longest_px, bas_size_longest_cm, bas_filter_size, bas_frame_thickness, bas_frame_near, bas_frame_far, ], concurrency_limit=1, ) ### Server launch demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def main(): CHECKPOINT = "prs-eth/marigold-depth-lcm-v1-0" CROWD_DATA = "crowddata-marigold-depth-lcm-v1-0-space-v1-0" os.system("pip freeze") if "HF_TOKEN_LOGIN" in os.environ: login(token=os.environ["HF_TOKEN_LOGIN"]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipe = MarigoldDepthPipeline.from_pretrained( CHECKPOINT, variant="fp16", torch_dtype=torch.float16 ).to(device) pipe.vae_tiny = diffusers.AutoencoderTiny.from_pretrained( "madebyollin/taesd", torch_dtype=torch.float16 ).to(device) pipe.set_progress_bar_config(disable=True) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers hf_writer = None if "HF_TOKEN_LOGIN_WRITE_CROWD" in os.environ: hf_writer = HuggingFaceDatasetSaver( os.getenv("HF_TOKEN_LOGIN_WRITE_CROWD"), CROWD_DATA, private=True, info_filename="dataset_info.json", separate_dirs=True, ) run_demo_server(pipe, hf_writer) if __name__ == "__main__": main()