from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch_dtype = torch.bfloat16 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_name = "bigscience/bloomz-1b7" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto").to(device=device) def model(text,**kargs): inputs = tokenizer.encode(text=text, return_tensors="pt").to(device=device) outputs = model.generate(inputs,**kargs) return tokenizer.decode(outputs[0]) if __name__ == "__main__": print("model test") model("This is the input text.")