import gradio as gr from tensorflow.keras.utils import img_to_array,load_img from keras.models import load_model import numpy as np # Load the pre-trained model from the local path model_path = 'sugar.h5' model = load_model(model_path) # Load the model here def predict_disease(image_file, model, all_labels): try: # Load and preprocess the image img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils img_array = img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Add batch dimension img_array = img_array / 255.0 # Normalize the image # Predict the class predictions = model.predict(img_array) # Use the loaded model here predicted_class = np.argmax(predictions[0]) # Get the predicted class label predicted_label = all_labels[predicted_class] # Print the predicted label to the console if predicted_label=='Sugarcane Healthy': predicted_label = predicted_label = """
* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
""" elif predicted_label=='Sugarcane Rust': predicted_label = """* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
""" elif predicted_label=='Sugarcane RedRot': predicted_label = """* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
""" elif predicted_label=='Sugarcane Mosaic': predicted_label = """* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
""" else: predicted_label = """