import tensorflow as tf nomanet = tf.keras.models.load_model("Nomanet.h5") import gradio as gr labels = {0: "melanoma", 1: "nevus", 2: "seborrheic_keratosis"} def classify_image(inp): img = tf.keras.utils.load_img( inp, target_size=(256,256) ) img_array = tf.keras.utils.img_to_array(img) img_array = tf.expand_dims(img_array, 0) predictions = nomanet.predict(img_array)[0] return labels[model_prediction] gr.Interface(fn=classify_image, inputs=gr.inputs.Image(type="filepath"), outputs=gr.outputs.Label()).launch(share=True, debug=True, allow_flagging='never')