import gradio as gr import tensorflow as tf import tensorflow_hub as hub from PIL import Image import utils _RESOLUTION = 224 _MODEL_PATH = "gs://cait-tf/cait_xxs24_224" def get_model() -> tf.keras.Model: """Initiates a tf.keras.Model from TF-Hub.""" inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3)) hub_module = hub.KerasLayer(_MODEL_PATH) logits, sa_atn_score_dict, ca_atn_score_dict = hub_module(inputs) return tf.keras.Model( inputs, [logits, sa_atn_score_dict, ca_atn_score_dict] ) _MODEL = get_model() def show_plot(image): """Function to be called when user hits submit on the UI.""" _, preprocessed_image = utils.preprocess_image( image, "deit_tiny_patch16_224" ) _, _, ca_atn_score_dict = _MODEL.predict(preprocessed_image) result_first_block = utils.get_cls_attention_map( image, ca_atn_score_dict, block_key="ca_ffn_block_0_att" ) result_second_block = utils.get_cls_attention_map( image, ca_atn_score_dict, block_key="ca_ffn_block_1_att" ) return Image.fromarray(result_first_block), Image.fromarray( result_second_block ) title = "Generate Class Attention Plots" article = "Class attention maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.)." iface = gr.Interface( show_plot, inputs=gr.inputs.Image(type="pil", label="Input Image"), outputs="image", title=title, article=article, allow_flagging="never", examples=[["./butterfly.jpg"]], ) iface.launch()