import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import tiktoken from datasets import load_dataset import matplotlib.pyplot as plt import numpy as np from datetime import datetime import os # Define hyperparameters vocab_size = 50257 n_heads = 8 n_layers = 6 head_size = 64 n_embd = 512 block_size = 128 dropout = 0.1 learning_rate = 3e-4 weight_decay = 0.1 # Set Hugging Face cache directories on the external disk os.environ['HF_HOME'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/hf_cache' os.environ['HF_DATASETS_CACHE'] = '/media/adrian/FamilyBackup/adrian_ai_workspace/datasets_cache' # Load the BookCorpus dataset and ensure it's cached on the external disk dataset = load_dataset("bookcorpus", cache_dir='/media/adrian/FamilyBackup/adrian_ai_workspace/') # Keep only 10% of the dataset total_samples = len(dataset["train"]) one_percent_samples = int(total_samples * 0.001) dataset_subset = dataset["train"].select(range(one_percent_samples)) # Select only the first 1% # Split the subset into train (90%) and test (10%) split_dataset = dataset_subset.train_test_split(test_size=0.1) # 10% for testing train_dataset = split_dataset["train"] test_dataset = split_dataset["test"] # Print the size of the train and the test sets print(f"Train size: {len(train_dataset)}") print(f"Test size: {len(test_dataset)}") # Initialize the tiktoken encoder enc = tiktoken.get_encoding("gpt2") # Define the tokenization function def tokenize_function(examples): return { "input_ids": [enc.encode(text) for text in examples["text"]], "attention_mask": [[1] * len(enc.encode(text)) for text in examples["text"]] } # Function to pad or truncate sequences def pad_or_truncate(batch): max_length = 512 for key in ['input_ids', 'attention_mask']: batch[key] = [ seq[:max_length] + [0] * (max_length - len(seq)) if len(seq) < max_length else seq[:max_length] for seq in batch[key] ] return batch # Tokenize and process the datasets def process_dataset(dataset, split_name): # Tokenize tokenized_dataset = dataset.map( tokenize_function, batched=True, num_proc=20, remove_columns=dataset.column_names ) # Pad or truncate processed_dataset = tokenized_dataset.map( pad_or_truncate, batched=True, num_proc=20, ) # Set format to PyTorch tensors processed_dataset.set_format(type="torch", columns=["input_ids", "attention_mask"]) return processed_dataset # Process both train and test datasets train_dataset = process_dataset(train_dataset, "train") test_dataset = process_dataset(test_dataset, "test") # Print some examples print(f"Example train data: {train_dataset[0]}") print(f"Example test data: {test_dataset[0]}") # Create DataLoaders train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=False) # Print an example batch for batch in train_loader: print(f"Batch input ids shape: {batch['input_ids'].shape}") print(f"Batch attention mask shape: {batch['attention_mask'].shape}") break # Print an example batch for batch in train_loader: print(f"Batch input ids shape: {batch['input_ids'].shape}") print(f"Batch attention mask shape: {batch['attention_mask'].shape}") break # Define model class Head(nn.Module): """ One head of self-attention """ def __init__(self, head_size, n_embd, block_size, dropout): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B, T, C = x.shape k = self.key(x) q = self.query(x) v = self.value(x) assert C == self.key.in_features, f"Input size {C} doesn't match expected size {self.key.in_features}" wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5 wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) out = wei @ v return out class MultiHeadAttention(nn.Module): """ Multiple heads of self-attention in parallel """ def __init__(self, n_heads, head_size, n_embd, dropout): super().__init__() self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)]) self.proj = nn.Linear(n_heads * head_size, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): # Collects the outputs from each head head_outputs = [head(x) for head in self.heads] # Concatenate the outputs concatenated = torch.cat(head_outputs, dim=-1) # Apply linear transformation and dropout out = self.proj(concatenated) out = self.dropout(out) return out class FeedForward(nn.Module): """ A simple linear layer followed by non-linearity """ def __init__(self, n_embd, dropout=0.1, expansion_factor=4): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, expansion_factor * n_embd), nn.ReLU(), nn.Linear(expansion_factor * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): """ Transformer block: communication followed by computation """ def __init__(self, n_embd, n_head, dropout=0.1): # n_embed: embedding dimension, n_head: the number of heads we'd like super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout) self.ffwd = FeedForward(n_embd, dropout) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x class GPTLanguageModel(nn.Module): def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"): super().__init__() self.device = device self.block_size = block_size self.token_embedding_table = nn.Embedding(vocab_size, n_embd) self.position_embedding_table = nn.Embedding(block_size, n_embd) self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)]) self.ln_f = nn.LayerNorm(n_embd) self.lm_head = nn.Linear(n_embd, vocab_size) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.1, std=0.02) def forward(self, idx, targets=None): B, T = idx.shape # Truncate sequence length to block_size T = min(T, self.block_size) idx = idx[:, :T] # Get token embeddings for input indices tok_emb = self.token_embedding_table(idx) # (B, T, C) # Get position embeddings (truncate to match input length) pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) # (T, C) # Combine token and position embeddings x = tok_emb + pos_emb.unsqueeze(0) # (B, T, C) # Apply transformer blocks x = self.blocks(x) # (B, T, C) # Final layer normalization x = self.ln_f(x) # (B, T, C) # Get logits for vocabulary prediction logits = self.lm_head(x) # (B, T, vocab_size) # Optionally calculate loss if targets are provided loss = None if targets is not None: # Ensure targets are the same size as logits targets = targets[:, :T] B, T, C = logits.shape logits = logits.reshape(B*T, C) targets = targets.reshape(B*T) loss = F.cross_entropy(logits, targets) return logits, loss @torch.no_grad() def generate(self, idx, max_new_tokens): for _ in range(max_new_tokens): idx_cond = idx[:, -self.block_size:] # Crop to the last block_size tokens logits, _ = self(idx_cond) # Get Predictions logits = logits[:, -1, :] # Focus on the last time step probs = F.softmax(logits, dim=-1) # Get probabilities idx_next = torch.multinomial(probs, num_samples=1) # Samples from the distribution idx = torch.cat((idx, idx_next), dim=1) # Append sampled index return idx device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print (f"Using device: {device}") # Instantiate the model model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads, device=device) # Move the model to the GPU (if available) model = model.to(device) # Define criterion and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Training loop with progress reporting def batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs): train_losses = np.zeros(epochs) test_losses = np.zeros(epochs) for it in range(epochs): model.train() # Set model to training mode t0 = datetime.now() train_loss = [] for i, batch in enumerate(train_loader): inputs = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) # Create targets by shifting inputs by one position targets = inputs[:, 1:].contiguous() inputs = inputs[:, :-1].contiguous() # Zero parameter gradients optimizer.zero_grad() # Forward pass outputs, loss = model(inputs, targets) # Backward and optimize loss.backward() optimizer.step() train_loss.append(loss.item()) # Print progress every 100 batches if (i + 1) % 100 == 0: print(f'Epoch {it + 1}/{epochs}, Batch {i + 1}/{len(train_loader)}, Loss: {loss.item():.4f}') # Get average train_loss train_loss = np.mean(train_loss) model.eval() # Set model to evaluation mode test_loss = [] with torch.no_grad(): for batch in test_loader: inputs = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) # Create targets by shifting inputs by one position targets = inputs[:, 1:].contiguous() inputs = inputs[:, :-1].contiguous() outputs, loss = model(inputs, targets) test_loss.append(loss.item()) test_loss = np.mean(test_loss) # Save losses train_losses[it] = train_loss test_losses[it] = test_loss dt = datetime.now() - t0 print(f'Epoch {it + 1}/{epochs}, Train Loss: {train_loss:.4f}, ' f'Test Loss: {test_loss:.4f}, Duration: {dt}') return train_losses, test_losses # Run the training train_losses, test_losses = batch_gh(model, criterion, optimizer, train_loader, test_loader, epochs=2) # Plot loss plt.plot(train_losses, label="train_loss") plt.plot(test_losses, label="test_loss") plt.legend() plt.show() # Save model weights model_save_path = "/home/adrian/Documents/StoryCrafterLLM/model_weights.pth" torch.save(model.state_dict(), model_save_path) print(f"Model saved to {model_save_path}")