from transformers import pipeline import gradio as gr # Load the model model_name = "google/flan-t5-base" # Choose your desired model generator = pipeline("text2text-generation", model=model_name) # Function to generate test cases def generate_test_cases(method, url, headers, payload): prompt = f""" Generate comprehensive API test cases: Method: {method} URL: {url} Headers: {headers} Payload: {payload} Include: - Happy path - Negative test cases - Performance scenarios - Boundary conditions """ try: response = generator(prompt, max_length=500) return response[0]['generated_text'] except Exception as e: return f"Error generating test cases: {str(e)}" # Create the Gradio interface iface = gr.Interface( fn=generate_test_cases, inputs=[ gr.Textbox(label="HTTP Method (GET, POST, etc.)"), gr.Textbox(label="API URL"), gr.Textbox(label="Headers (JSON format)"), gr.Textbox(label="Payload (JSON format)"), ], outputs="text", title="API Test Case Generator", description="Generate structured test cases for APIs using Hugging Face models." ) if __name__ == "__main__": iface.launch()