import io from fastapi import FastAPI, File, UploadFile import subprocess import os import requests import random from datetime import datetime from datetime import date import json from pydantic import BaseModel from typing import Annotated import random from fastapi import FastAPI, Response import string import time from huggingface_hub import InferenceClient from fastapi import Form class Query(BaseModel): text: str code:str host:str class Query2(BaseModel): text: str code:str filename:str host:str class QueryM(BaseModel): text: str tokens:int temp:float topp:float topk:float from fastapi import FastAPI, Request, Depends, UploadFile, File from fastapi.exceptions import HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=['*'], allow_headers=['*'], ) # cred = credentials.Certificate('key.json') # app1 = firebase_admin.initialize_app(cred) # db = firestore.client() # data_frame = pd.read_csv('data.csv') @app.on_event("startup") async def startup_event(): print("on startup") # requests.get("https://audiospace-1-u9912847.deta.app/sendcode") audio_space="https://audiospace-1-u9912847.deta.app/uphoto" import threading from huggingface_hub.inference_api import InferenceApi client = InferenceClient() @app.post("/image") async def get_answer(q: Query ): text = q.text try: global client imagei = client.text_to_image(text) byte_array = io.BytesIO() imagei.save(byte_array, format='JPEG') response = Response(content=byte_array.getvalue(), media_type="image/png") return response except: return JSONResponse({"status":False}) @app.post("/mistral") async def get_answer(q: QueryM ): text = q.text try: client = InferenceClient() generate_kwargs = dict( max_new_tokens= int(q.tokens), do_sample=True, top_p= q.topp, top_k=int(q.topk), temperature=q.temp, ) inputs= text response = client.post(json={"inputs": inputs, "parameters": generate_kwargs}, model="mistralai/Mistral-7B-Instruct-v0.1") json_string = response.decode('utf-8') list_of_dicts = json.loads(json_string) result_dict = list_of_dicts[0] x=(result_dict['generated_text']) x=x.replace(inputs,'') return JSONResponse({"result":x,"status":True}) except Exception as e: print(e) return JSONResponse({"status":False}) ''' to be removed when main code is updated ''' @app.post("/") async def get_answer(q: Query ): text = q.text code= q.code host= q.host N = 20 res = ''.join(random.choices(string.ascii_uppercase + string.digits, k=N)) res= res+ str(time.time()) filename= res t = threading.Thread(target=do_ML, args=(filename,text,code,host)) t.start() return JSONResponse({"id": filename}) return "hello" @app.post("/error") async def get_answer(q: Query2 ): text = q.text code= q.code filename= q.filename host= q.host t = threading.Thread(target=do_ML, args=(filename,text,code,host)) t.start() return JSONResponse({"id": filename}) import requests import io import io from PIL import Image import json # client = InferenceClient(model="SG161222/Realistic_Vision_V1.4") def do_ML(filename:str,text:str,code:str,host:str): try: global client imagei = client.text_to_image(text) byte_array = io.BytesIO() imagei.save(byte_array, format='JPEG') image_bytes = byte_array.getvalue() files = {'file': image_bytes} global audio_space url = audio_space+code data = {"filename": filename} response = requests.post(url, files=files,data= data) print(response.text) if response.status_code == 200: print("File uploaded successfully.") # Handle the response as needed else: print("File upload failed.") except: data={"text":text,"filename":filename} requests.post(host+"texttoimage2handleerror",data=data)