import torch import gradio import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config #retrain #initialize device = torch.device("cuda") model = T5ForConditionalGeneration.from_pretrained('t5-small',device_map="auto") tokenizer = T5Tokenizer.from_pretrained('t5-small',device_map="auto") def summ(text_content): preprocess_text = text_content.strip().replace("\n","") t5_inputText = "summarize: "+preprocess_text tokenized_text = tokenizer.encode(t5_inputText, return_tensors="pt").to(device) summary_ids = model.generate(tokenized_text,num_beams=4, no_repeat_ngram_size=2, min_length=30, max_length=300,early_stopping=True).to(device) summarized_output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summarized_output def greet(text_content): bm25 = summ(text_content) return bm25 demo = gr.Interface(fn=greet, inputs="text", outputs="text") print("Throwing up") demo.launch(server_name="0.0.0.0", server_port=8000, share=True)