import streamlit as st
import streamlit.components.v1 as components
import pickle
import sentence_transformers
from sentence_transformers import SentenceTransformer, util
from PIL import Image
import torch
import spacy
import os
import glob
import random
torch.set_num_threads(4)
def get_spacy_dbpedia_highlights(ingredients):
import spacy
import spacy_dbpedia_spotlight
raw_ingredients = ingredients
import re
ingredients = re.sub("[0-9,()\/\-\.]", "", ingredients)
doc = nlp(ingredients)
for ent in doc.ents:
if ent.text.lower() not in stop_words and ent.text in raw_ingredients:
replace_str = ' ' + ent.text + ' '
raw_ingredients = raw_ingredients.replace(ent.text, replace_str)
return raw_ingredients
def detect_food(query, text_emb, labels, k=1):
query_emb = model.encode(Image.open(query), convert_to_tensor=True, show_progress_bar=False)
hits = util.semantic_search(query_emb, text_emb, top_k=k)[0]
results = []
for i, hit in enumerate(hits):
results.append((labels[hit['corpus_id']], hit['score']))
if i > 2:
break
return results
def run_search(food_image, col2):
with open("./Pretrained/labels.pkl", 'rb') as fIn:
labels = pickle.load(fIn)
emb_filename = './Pretrained/food_embeddings.pkl'
text_emb = torch.load(emb_filename, map_location=torch.device('cpu'))
results = detect_food(food_image, text_emb, labels, 3)
food_recognised, score = results[0]
del text_emb
del labels
import pysos
id2recipe = pysos.Dict("./Pretrained/id2recipe")
food2id = pysos.Dict("./Pretrained/food2id")
id = food2id[food_recognised]
recipe_name = food_recognised.title()
ingredients_list =id2recipe[id]['ingredients']
highlighted_ingredients= get_spacy_dbpedia_highlights(ingredients_list)
recipe= id2recipe[id]['instructions']
dataset = " " + id2recipe[id]['dataset']
if dataset.strip() == "Recipe1M":
nutritional_facts= "For nutritional facts, schedule and servings, visit the link in the footer"
else:
nutritional_facts = id2recipe[id]['nutrition_facts']
source= id2recipe[id]['recipesource']
del id2recipe
del food2id
st.markdown("
", unsafe_allow_html=True)
with col2:
st.markdown("Top 3 predictions   ", unsafe_allow_html=True)
results_static_tag = '
W3.CSS{}
'
result_rows = ""
for i, result in enumerate(results):
results_dynamic_tag= '{}
'
if i == 0:
results_dynamic_tag = results_dynamic_tag.format("" + str(i+1) + "." + result[0].title() + "", 'w3-blue', result[1] * 100)
else:
results_dynamic_tag = results_dynamic_tag.format(str(i+1) + "." + result[0].title(), "w3-orange" ,result[1] * 100)
result_rows += results_dynamic_tag
results_static_tag = results_static_tag.format(result_rows)
st.markdown(results_static_tag, unsafe_allow_html=True)
title_tag = ' Recipe for top result:  ' + recipe_name + '
'
st.markdown(title_tag, unsafe_allow_html=True)
ing_hdr_tag = ' Ingredients
'
ing_style= "{border: 3x outset white; background-color: #ccf5ff; color: black; text-align: left; font-size: 14px; padding: 5px;}"
ing_tag = '{}
'
ing_tag = ing_tag.format(ing_style, highlighted_ingredients.strip())
st.markdown(ing_hdr_tag, unsafe_allow_html=True)
st.markdown(ing_tag + "
", unsafe_allow_html=True)
rec_hdr_tag = ' Recipe
'
rec_style= "{border: 3x outset white; background-color: #ffeee6; color: black; text-align: left; font-size: 14px; padding: 5px;}"
rec_tag = '{}
'
rec_tag = rec_tag.format(rec_style, recipe.strip())
st.markdown(rec_hdr_tag, unsafe_allow_html=True)
st.markdown(rec_tag + "
", unsafe_allow_html=True)
src_hdr_tag = ' Recipe source
'
src_tag = '{}'
src_tag = src_tag.format(source, source)
st.markdown(src_hdr_tag, unsafe_allow_html=True)
st.markdown(src_tag + "
", unsafe_allow_html=True)
return 1
if 'models_loaded' not in st.session_state:
st.session_state['models_loaded'] = False
st.title('WTF - What The Food 🤬')
st.subheader("Image to Recipe - 1.5M foods supported")
st.markdown("Built for fun with 💙 by a quintessential foodie - Prithivi Da | [@prithivida](https://twitter.com/prithivida) |[[GitHub]](https://github.com/PrithivirajDamodaran)
", unsafe_allow_html=True)
st.write("""Read Me: The goal is to detect a "Single food item" from the image and retrieve it's recipe. So by design the model works well on single foods. It works on platters too fx English breakfast but it may not perform well on a custom combination with multiple recipes or hyper-local foods.
""")
def load_image(image_file):
img = Image.open(image_file)
return img
def load_models():
with st.spinner(text="Loading Models..."):
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('dbpedia_spotlight')
model = SentenceTransformer('clip-ViT-B-32')
stop_words = set(['chopped', 'freshly ground', 'freshly squeezed', 'dash', 'powder', 'rice', 'ice', 'noodles', 'pepper', 'milk', 'ced', 'cheese', 'sugar', 'salt', 'pkt', 'minced', 'onion', 'onions', 'garlic', 'butter', 'slices', 'ounce', 'sauce', 'freshly', 'grated', 'teaspoon', 'cup', 'oz', '⁄', 'to', 'or', 'diced', 'into', 'pound', 'dried', 'water', 'about', 'whole', 'small', 'vegetable', 'inch', 'tbsp', 'cooked', 'large', 'sliced', 'dry', 'optional', 'package', 'ounces', 'unsalted', 'lbs', 'green', 'flour', 'for', 'wine', 'crushed', 'drained', 'lb', 'frozen', 'tsp', 'finely', 'medium', 'tablespoon', 'tablespoons', 'juice', 'shredded', 'can', 'minced', 'fresh', 'cut', 'pieces', 'in', 'thinly', 'of', 'extract', 'teaspoons', 'ground', 'and', 'cups', 'peeled', 'taste', 'ml', 'lengths'])
st.session_state['nlp'] = nlp
st.session_state['model'] = model
st.session_state['stop_words'] = stop_words
if not st.session_state['models_loaded']:
load_models()
st.session_state['models_loaded'] = True
random_button = st.button('⚡ Try a Random Food')
st.write("(or)")
image_file = st.file_uploader("Tip: Upload HD images for better results.", type=["jpg","jpeg"])
nlp = st.session_state['nlp']
model = st.session_state['model']
stop_words = st.session_state['stop_words']
col1, col2 = st.columns(2)
if random_button:
with st.spinner(text="Detecting food..."):
samples = glob.glob('./samples' + "/*")
random_sample = random.choice(samples)
pil_image = load_image(random_sample)
with col1:
st.image(pil_image, use_column_width='auto')
return_code = run_search(random_sample, col2)
else:
if image_file is not None:
pil_image = load_image(image_file)
with open(image_file.name, 'wb') as f:
pil_image.save(f)
with col1:
st.image(pil_image, use_column_width='auto')
with st.spinner(text="Detecting food..."):
return_code = run_search(image_file.name, col2)
os.system('rm -r "' + image_file.name + '"')