Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from diffusers import FluxKontextPipeline
|
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from aura_sr import AuraSR
|
|
|
|
| 12 |
|
| 13 |
# --- Main Model Initialization ---
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -21,29 +22,22 @@ pipe.load_lora_weights("prithivMLmods/Polaroid-Warm-i2i", weight_name="Polaroid-
|
|
| 21 |
pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil")
|
| 22 |
|
| 23 |
# --- Upscaler Model Initialization ---
|
| 24 |
-
# FIX: Removed the .to("cuda") call. The library handles device placement automatically.
|
| 25 |
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
| 26 |
|
| 27 |
@spaces.GPU
|
| 28 |
def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 29 |
"""
|
| 30 |
-
Perform image editing and optional upscaling.
|
| 31 |
-
|
| 32 |
-
Args:
|
| 33 |
-
input_image (PIL.Image.Image): The input image to be edited.
|
| 34 |
-
prompt (str): Text description of the desired edit.
|
| 35 |
-
lora_adapter (str): The name of the LoRA adapter to use.
|
| 36 |
-
upscale_image (bool): If True, the final image will be upscaled 4x.
|
| 37 |
-
seed (int, optional): Random seed for reproducible generation.
|
| 38 |
-
randomize_seed (bool, optional): If True, generates a random seed.
|
| 39 |
-
guidance_scale (float, optional): Controls adherence to the prompt.
|
| 40 |
-
steps (int, optional): Number of diffusion steps.
|
| 41 |
-
progress (gr.Progress, optional): Gradio progress tracker.
|
| 42 |
|
| 43 |
Returns:
|
| 44 |
-
tuple: A 3-tuple containing
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
"""
|
|
|
|
|
|
|
|
|
|
| 47 |
if lora_adapter == "PhotoCleanser":
|
| 48 |
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
|
| 49 |
elif lora_adapter == "PhotoRestorer":
|
|
@@ -56,39 +50,31 @@ def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_s
|
|
| 56 |
if randomize_seed:
|
| 57 |
seed = random.randint(0, MAX_SEED)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
else:
|
| 71 |
-
image = pipe(
|
| 72 |
-
prompt=prompt,
|
| 73 |
-
guidance_scale=guidance_scale,
|
| 74 |
-
num_inference_steps=steps,
|
| 75 |
-
generator=torch.Generator().manual_seed(seed),
|
| 76 |
-
).images[0]
|
| 77 |
|
| 78 |
-
# Conditionally upscale the generated image
|
| 79 |
if upscale_image:
|
| 80 |
progress(0.8, desc="Upscaling image...")
|
| 81 |
image = aura_sr.upscale_4x(image)
|
| 82 |
|
| 83 |
-
return image, seed, gr.Button(visible=True)
|
| 84 |
|
| 85 |
@spaces.GPU
|
| 86 |
def infer_example(input_image, prompt, lora_adapter):
|
| 87 |
"""
|
| 88 |
-
Wrapper function for gr.Examples
|
| 89 |
"""
|
| 90 |
-
|
| 91 |
-
return
|
| 92 |
|
| 93 |
css="""
|
| 94 |
#col-container {
|
|
@@ -145,7 +131,8 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 145 |
)
|
| 146 |
|
| 147 |
with gr.Column():
|
| 148 |
-
|
|
|
|
| 149 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 150 |
with gr.Row():
|
| 151 |
lora_adapter = gr.Dropdown(
|
|
@@ -156,17 +143,18 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 156 |
|
| 157 |
gr.Examples(
|
| 158 |
examples=[
|
| 159 |
-
["photocleanser/1.png", "[photo content], remove the embroidered pattern from the image
|
| 160 |
-
["photocleanser/2.png", "[photo content], remove the cat from the image
|
| 161 |
-
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage
|
| 162 |
-
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage
|
| 163 |
-
["polaroid/1.png", "[photo content], apply a warm, vintage Polaroid-style filter
|
| 164 |
-
["polaroid/2.png", "[photo content], give the image a classic Polaroid look
|
| 165 |
-
["pencil/1.png", "[photo content], transform the image into a detailed monochrome pencil sketch
|
| 166 |
-
["pencil/2.png", "[photo content], convert the photo into a realistic graphite pencil drawing
|
| 167 |
],
|
| 168 |
inputs=[input_image, prompt, lora_adapter],
|
| 169 |
-
|
|
|
|
| 170 |
fn=infer_example,
|
| 171 |
cache_examples=False,
|
| 172 |
label="Examples (Image | Prompt | Selected LoRA)"
|
|
@@ -176,11 +164,15 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 176 |
triggers=[run_button.click, prompt.submit],
|
| 177 |
fn=infer,
|
| 178 |
inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps],
|
| 179 |
-
|
|
|
|
| 180 |
)
|
|
|
|
|
|
|
| 181 |
reuse_button.click(
|
| 182 |
-
|
| 183 |
-
|
|
|
|
| 184 |
outputs=[input_image]
|
| 185 |
)
|
| 186 |
|
|
|
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from aura_sr import AuraSR
|
| 12 |
+
from gradio_imageslider import ImageSlider
|
| 13 |
|
| 14 |
# --- Main Model Initialization ---
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 22 |
pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil")
|
| 23 |
|
| 24 |
# --- Upscaler Model Initialization ---
|
|
|
|
| 25 |
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
| 26 |
|
| 27 |
@spaces.GPU
|
| 28 |
def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 29 |
"""
|
| 30 |
+
Perform image editing and optional upscaling, returning a pair for the ImageSlider.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
Returns:
|
| 33 |
+
tuple: A 3-tuple containing:
|
| 34 |
+
- (PIL.Image.Image, PIL.Image.Image): A tuple of the (original, generated) images for the slider.
|
| 35 |
+
- int: The seed used for generation.
|
| 36 |
+
- gr.update: A Gradio update to make the reuse button visible.
|
| 37 |
"""
|
| 38 |
+
if not input_image:
|
| 39 |
+
raise gr.Error("Please upload an image for editing.")
|
| 40 |
+
|
| 41 |
if lora_adapter == "PhotoCleanser":
|
| 42 |
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
|
| 43 |
elif lora_adapter == "PhotoRestorer":
|
|
|
|
| 50 |
if randomize_seed:
|
| 51 |
seed = random.randint(0, MAX_SEED)
|
| 52 |
|
| 53 |
+
original_image = input_image.copy().convert("RGB")
|
| 54 |
+
|
| 55 |
+
image = pipe(
|
| 56 |
+
image=original_image,
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
guidance_scale=guidance_scale,
|
| 59 |
+
width = original_image.size[0],
|
| 60 |
+
height = original_image.size[1],
|
| 61 |
+
num_inference_steps=steps,
|
| 62 |
+
generator=torch.Generator().manual_seed(seed),
|
| 63 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
|
|
|
| 65 |
if upscale_image:
|
| 66 |
progress(0.8, desc="Upscaling image...")
|
| 67 |
image = aura_sr.upscale_4x(image)
|
| 68 |
|
| 69 |
+
return (original_image, image), seed, gr.Button(visible=True)
|
| 70 |
|
| 71 |
@spaces.GPU
|
| 72 |
def infer_example(input_image, prompt, lora_adapter):
|
| 73 |
"""
|
| 74 |
+
Wrapper function for gr.Examples to call the main infer logic for the slider.
|
| 75 |
"""
|
| 76 |
+
(original_image, generated_image), seed, _ = infer(input_image, prompt, lora_adapter, upscale_image=False)
|
| 77 |
+
return (original_image, generated_image), seed
|
| 78 |
|
| 79 |
css="""
|
| 80 |
#col-container {
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
with gr.Column():
|
| 134 |
+
# Replace the single image result with the ImageSlider
|
| 135 |
+
output_slider = ImageSlider(label="Before / After", show_label=False, interactive=False)
|
| 136 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 137 |
with gr.Row():
|
| 138 |
lora_adapter = gr.Dropdown(
|
|
|
|
| 143 |
|
| 144 |
gr.Examples(
|
| 145 |
examples=[
|
| 146 |
+
["photocleanser/1.png", "[photo content], remove the embroidered pattern from the image...", "PhotoCleanser"],
|
| 147 |
+
["photocleanser/2.png", "[photo content], remove the cat from the image...", "PhotoCleanser"],
|
| 148 |
+
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage...", "PhotoRestorer"],
|
| 149 |
+
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage...", "PhotoRestorer"],
|
| 150 |
+
["polaroid/1.png", "[photo content], apply a warm, vintage Polaroid-style filter...", "PolaroidWarm"],
|
| 151 |
+
["polaroid/2.png", "[photo content], give the image a classic Polaroid look...", "PolaroidWarm"],
|
| 152 |
+
["pencil/1.png", "[photo content], transform the image into a detailed monochrome pencil sketch...", "MonochromePencil"],
|
| 153 |
+
["pencil/2.png", "[photo content], convert the photo into a realistic graphite pencil drawing...", "MonochromePencil"]
|
| 154 |
],
|
| 155 |
inputs=[input_image, prompt, lora_adapter],
|
| 156 |
+
# The output now targets the ImageSlider component
|
| 157 |
+
outputs=[output_slider, seed],
|
| 158 |
fn=infer_example,
|
| 159 |
cache_examples=False,
|
| 160 |
label="Examples (Image | Prompt | Selected LoRA)"
|
|
|
|
| 164 |
triggers=[run_button.click, prompt.submit],
|
| 165 |
fn=infer,
|
| 166 |
inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps],
|
| 167 |
+
# The output now targets the ImageSlider component
|
| 168 |
+
outputs=[output_slider, seed, reuse_button]
|
| 169 |
)
|
| 170 |
+
|
| 171 |
+
# Update the reuse function to handle the ImageSlider output
|
| 172 |
reuse_button.click(
|
| 173 |
+
# The slider outputs a tuple of images; we want the second one (the generated result)
|
| 174 |
+
fn=lambda images: images[1] if isinstance(images, (list, tuple)) and len(images) > 1 else images,
|
| 175 |
+
inputs=[output_slider],
|
| 176 |
outputs=[input_image]
|
| 177 |
)
|
| 178 |
|