import streamlit as st from huggingface_hub import InferenceClient import os import sys ##TTo st.title("Instruct-Chatbot") base_url="https://api-inference.huggingface.co/models/" API_KEY = os.environ.get('HUGGINGFACE_API_KEY') # print(API_KEY) # headers = {"Authorization":"Bearer "+API_KEY} model_links ={ "Dorado🥤":base_url+"mistralai/Mistral-7B-Instruct-v0.3", "Hercules⭐":base_url+"mistralai/Mistral-7B-Instruct-v0.2", "Lepus🚀":base_url+"mistralai/Mixtral-8x7B-Instruct-v0.1" } #Pull info about the model to display model_info ={ "Dorado🥤": {'description':"""The Dorado model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nThis model is best for minimal problem-solving, content writing, and daily tips.\n""", 'logo':'./dorado.png'}, "Hercules⭐": {'description':"""The Hercules model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nThis model excels in coding, logical reasoning, and high-speed inference. \n""", 'logo':'./hercules.png'}, "Lepus🚀": {'description':"""The Lepus model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""", 'logo':'./lepus.png'}, } def format_promt(message, custom_instructions=None): prompt = "" if custom_instructions: prompt += f"[INST] {custom_instructions} [/INST]" prompt += f"[INST] {message} [/INST]" return prompt def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None models =[key for key in model_links.keys()] selected_model = st.sidebar.selectbox("Select Model", models) temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown(model_info[selected_model]['description']) st.sidebar.image(model_info[selected_model]['logo']) st.sidebar.markdown("*Generated content may be inaccurate or false.*") st.sidebar.markdown("\nYou can support me by sponsoring to buy me a coffee🥤.[here](https://buymeacoffee.com/prithivsakthi).") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() repo_id = model_links[selected_model] st.subheader(f'{selected_model}') # st.title(f'ChatBot Using {selected_model}') if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input(f"Hi I'm {selected_model}🗞️, How can I help you today?"): custom_instruction = "Act like a Human in conversation" with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) formated_text = format_promt(prompt, custom_instruction) with st.chat_message("assistant"): client = InferenceClient( model=model_links[selected_model],) output = client.text_generation( formated_text, temperature=temp_values,#0.5 max_new_tokens=3000, stream=True ) response = st.write_stream(output) st.session_state.messages.append({"role": "assistant", "content": response})