import gradio as gr import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration import time processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") def caption(img, min_len, max_len): raw_image = Image.open(img).convert('RGB') inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs, min_length=min_len, max_length=max_len) return processor.decode(out[0], skip_special_tokens=True) def greet(img, min_len, max_len): start = time.time() result = caption(img, min_len, max_len) end = time.time() total_time = str(end - start) result = result + '\n' + total_time + ' seconds' return result iface = gr.Interface(fn=greet, title='Image Captioning with BLIP', description="Generate captions for images using the BLIP model.", inputs=[gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30), gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100)], outputs=gr.Textbox(label='Caption')) iface.launch()