# Men-wome-detection-using-yolov8 ![pexels-kaique-rocha-109919](https://user-images.githubusercontent.com/85225054/218306896-3ce9d1a1-96b0-42f7-8725-c3cbbab39280.jpg) #### This guide will provide instructions on how to convert OIDv4 data into the YOLO format for use with YOLOv8 object detection algorithms. #### Getting Started ``` git clone https://github.com/prince0310/Men-wome-detection-using-yolov8-.git ```
Dataset
For training custom data set on yolo model you need to have data set arrangement in yolo format. which includes Images and Their annotation file.
##### clone the repository and run donload the data set and their annotation file ``` git clone https://github.com/prince0310/OIDv4_ToolKit.git ``` ##### Implement ```convert annotation.ipynb``` notebook
it will create data in below format ``` Custom dataset | |─── train | | | └───Images --- 0fdea8a716155a8e.jpg | └───Labels --- 0fdea8a716155a8e.txt | └─── test | └───Images --- 0b6f22bf3b586889.jpg | └───Labels --- 0b6f22bf3b586889.txt | └─── validation | └───Images --- 0fdea8a716155a8e.jpg | └───Labels --- 0fdea8a716155a8e.txt | └─── data.yaml ```
Install Pip install the ultralytics package including all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**3.10>=Python>=3.7**](https://www.python.org/) environment, including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). ```bash pip install ultralytics ```
Train
Python ```bash from ultralytics import YOLO # Train model = YOLO("yolov8n.pt") results = model.train(data="data.yaml", epochs=200, workers=1, batch=8,imgsz=640) # train the model ``` Cli ```bash yolo detect train data=data.yaml model=yolov8n.pt epochs=200 imgsz=640 ```
Detect
Python ```bash from ultralytics import YOLO # Load a model model = YOLO("best.pt") # load a custom model # Predict with the model results = model("image.jpg", save = True) # predict on an image ``` Cli ```bash yolo detect predict model=path/to/best.pt source="images.jpg" # predict with custom model ```