# Men-wome-detection-using-yolov8

#### This guide will provide instructions on how to convert OIDv4 data into the YOLO format for use with YOLOv8 object detection algorithms.
#### Getting Started
``` git clone https://github.com/prince0310/Men-wome-detection-using-yolov8-.git ```
Dataset
For training custom data set on yolo model you need to have data set arrangement in yolo format. which includes Images and Their annotation file.
##### clone the repository and run donload the data set and their annotation file
``` git clone https://github.com/prince0310/OIDv4_ToolKit.git ```
##### Implement ```convert annotation.ipynb``` notebook
it will create data in below format
```
Custom dataset
|
|─── train
| |
| └───Images --- 0fdea8a716155a8e.jpg
| └───Labels --- 0fdea8a716155a8e.txt
|
└─── test
| └───Images --- 0b6f22bf3b586889.jpg
| └───Labels --- 0b6f22bf3b586889.txt
|
└─── validation
| └───Images --- 0fdea8a716155a8e.jpg
| └───Labels --- 0fdea8a716155a8e.txt
|
└─── data.yaml
```
Install
Pip install the ultralytics package including
all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a
[**3.10>=Python>=3.7**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
pip install ultralytics
```
Train
Python
```bash
from ultralytics import YOLO
# Train
model = YOLO("yolov8n.pt")
results = model.train(data="data.yaml", epochs=200, workers=1, batch=8,imgsz=640) # train the model
```
Cli
```bash
yolo detect train data=data.yaml model=yolov8n.pt epochs=200 imgsz=640
```
Detect
Python
```bash
from ultralytics import YOLO
# Load a model
model = YOLO("best.pt") # load a custom model
# Predict with the model
results = model("image.jpg", save = True) # predict on an image
```
Cli
```bash
yolo detect predict model=path/to/best.pt source="images.jpg" # predict with custom model
```