Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,7 +38,7 @@ from compel import Compel, ReturnedEmbeddingsType
|
|
| 38 |
|
| 39 |
from gradio_imageslider import ImageSlider
|
| 40 |
|
| 41 |
-
# Load LoRA configurations
|
| 42 |
with open("sdxl_loras.json", "r") as file:
|
| 43 |
data = json.load(file)
|
| 44 |
sdxl_loras_raw = [
|
|
@@ -123,8 +123,9 @@ et = time.time()
|
|
| 123 |
print('Loading VAE took: ', et - st, 'seconds')
|
| 124 |
|
| 125 |
st = time.time()
|
|
|
|
| 126 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 127 |
-
"
|
| 128 |
vae=vae,
|
| 129 |
controlnet=[identitynet, zoedepthnet],
|
| 130 |
torch_dtype=torch.float16
|
|
@@ -132,7 +133,8 @@ pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
|
| 132 |
|
| 133 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 134 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 135 |
-
|
|
|
|
| 136 |
et = time.time()
|
| 137 |
print('Loading pipeline took: ', et - st, 'seconds')
|
| 138 |
|
|
@@ -157,10 +159,10 @@ last_lora = ""
|
|
| 157 |
last_fused = False
|
| 158 |
lora_archive = "/data"
|
| 159 |
|
| 160 |
-
#
|
| 161 |
def detect_faces(face_image, use_multiple_faces=False):
|
| 162 |
"""
|
| 163 |
-
Detect faces in the image
|
| 164 |
Returns: list of face info dictionaries, or empty list if no faces
|
| 165 |
"""
|
| 166 |
try:
|
|
@@ -170,47 +172,56 @@ def detect_faces(face_image, use_multiple_faces=False):
|
|
| 170 |
print("No faces detected")
|
| 171 |
return []
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
# Sort faces by size (largest first)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]),
|
| 177 |
reverse=True
|
| 178 |
)
|
| 179 |
|
| 180 |
if use_multiple_faces:
|
| 181 |
-
print(f"Detected {len(
|
| 182 |
-
return
|
| 183 |
else:
|
| 184 |
-
print(f"Using largest face (detected {len(
|
| 185 |
-
return [
|
| 186 |
|
| 187 |
except Exception as e:
|
| 188 |
print(f"Face detection error: {e}")
|
| 189 |
return []
|
| 190 |
|
| 191 |
-
def
|
| 192 |
"""
|
| 193 |
-
Process face embeddings
|
|
|
|
| 194 |
"""
|
| 195 |
if not face_info_list:
|
| 196 |
-
return
|
| 197 |
-
|
| 198 |
-
if len(face_info_list) == 1:
|
| 199 |
-
return face_info_list[0]['embedding']
|
| 200 |
|
| 201 |
-
# Average embeddings for multiple faces
|
| 202 |
embeddings = [face_info['embedding'] for face_info in face_info_list]
|
| 203 |
-
|
| 204 |
-
return avg_embedding
|
| 205 |
|
| 206 |
def create_face_kps_image(face_image, face_info_list):
|
| 207 |
"""
|
| 208 |
-
Create keypoints image from face info
|
| 209 |
"""
|
| 210 |
if not face_info_list:
|
| 211 |
return face_image
|
| 212 |
|
| 213 |
-
# For multiple faces, draw all keypoints
|
| 214 |
if len(face_info_list) > 1:
|
| 215 |
return draw_multiple_kps(face_image, [f['kps'] for f in face_info_list])
|
| 216 |
else:
|
|
@@ -218,7 +229,7 @@ def create_face_kps_image(face_image, face_info_list):
|
|
| 218 |
|
| 219 |
def draw_multiple_kps(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
| 220 |
"""
|
| 221 |
-
Draw keypoints for multiple faces
|
| 222 |
"""
|
| 223 |
stickwidth = 4
|
| 224 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
|
@@ -226,12 +237,14 @@ def draw_multiple_kps(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0),
|
|
| 226 |
w, h = image_pil.size
|
| 227 |
out_img = np.zeros([h, w, 3])
|
| 228 |
|
| 229 |
-
for kps in kps_list:
|
| 230 |
kps = np.array(kps)
|
|
|
|
|
|
|
| 231 |
|
| 232 |
for i in range(len(limbSeq)):
|
| 233 |
index = limbSeq[i]
|
| 234 |
-
color = color_list[index[0]]
|
| 235 |
|
| 236 |
x = kps[index][:, 0]
|
| 237 |
y = kps[index][:, 1]
|
|
@@ -245,7 +258,7 @@ def draw_multiple_kps(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0),
|
|
| 245 |
out_img = (out_img * 0.6).astype(np.uint8)
|
| 246 |
|
| 247 |
for idx_kp, kp in enumerate(kps):
|
| 248 |
-
color = color_list[idx_kp]
|
| 249 |
x, y = kp
|
| 250 |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
| 251 |
|
|
@@ -260,9 +273,9 @@ def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, i
|
|
| 260 |
|
| 261 |
for lora_list in lora_defaults:
|
| 262 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 263 |
-
face_strength = lora_list.get("face_strength", 0
|
| 264 |
-
image_strength = lora_list.get("image_strength", 0.
|
| 265 |
-
weight = lora_list.get("weight", 0
|
| 266 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
| 267 |
negative = lora_list.get("negative", "")
|
| 268 |
|
|
@@ -308,10 +321,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 308 |
guidance_scale, depth_control_scale, sdxl_loras, custom_lora, use_multiple_faces=False,
|
| 309 |
progress=gr.Progress(track_tqdm=True)):
|
| 310 |
"""
|
| 311 |
-
Enhanced run_lora with
|
| 312 |
-
- No faces (landscape mode)
|
| 313 |
-
- Multiple faces
|
| 314 |
-
- Improved results
|
| 315 |
"""
|
| 316 |
print("Custom LoRA:", custom_lora)
|
| 317 |
custom_lora_path = custom_lora[0] if custom_lora else None
|
|
@@ -320,26 +330,22 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 320 |
st = time.time()
|
| 321 |
face_image = resize_image_aspect_ratio(face_image)
|
| 322 |
|
| 323 |
-
# Validate selection FIRST before any array access
|
| 324 |
-
if not selected_state and not custom_lora_path:
|
| 325 |
-
raise gr.Error("❌ You must select a style before generating")
|
| 326 |
-
|
| 327 |
-
# Validate index is within bounds
|
| 328 |
-
if not custom_lora_path and (selected_state_index < 0 or selected_state_index >= len(sdxl_loras)):
|
| 329 |
-
raise gr.Error(f"❌ Invalid selection index: {selected_state_index}")
|
| 330 |
-
|
| 331 |
# Enhanced face detection
|
| 332 |
face_info_list = detect_faces(face_image, use_multiple_faces)
|
| 333 |
face_detected = len(face_info_list) > 0
|
| 334 |
|
| 335 |
if face_detected:
|
| 336 |
-
|
|
|
|
| 337 |
face_kps = create_face_kps_image(face_image, face_info_list)
|
| 338 |
-
print(f"Processing with {len(face_info_list)} face(s)")
|
|
|
|
|
|
|
|
|
|
| 339 |
else:
|
| 340 |
face_emb = None
|
| 341 |
face_kps = face_image
|
| 342 |
-
print("No faces detected - using landscape/depth mode
|
| 343 |
|
| 344 |
et = time.time()
|
| 345 |
print('Face processing took:', et - st, 'seconds')
|
|
@@ -356,18 +362,27 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 356 |
if prompt_full:
|
| 357 |
prompt = prompt_full.replace("<subject>", prompt)
|
| 358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
print("Prompt:", prompt)
|
| 360 |
if prompt == "":
|
| 361 |
-
prompt = "a beautiful scene" if not face_detected else "a person"
|
| 362 |
print(f"Executing prompt: {prompt}")
|
| 363 |
|
| 364 |
if negative == "":
|
| 365 |
-
# Enhanced negative prompt
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
print("Custom Loaded LoRA:", custom_lora_path)
|
| 369 |
|
| 370 |
-
if custom_lora_path:
|
|
|
|
|
|
|
| 371 |
repo_name = custom_lora_path
|
| 372 |
full_path_lora = custom_lora_path
|
| 373 |
else:
|
|
@@ -381,15 +396,22 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 381 |
et = time.time()
|
| 382 |
print('Prompt processing took:', et - st, 'seconds')
|
| 383 |
|
| 384 |
-
#
|
| 385 |
if not face_detected:
|
| 386 |
-
#
|
| 387 |
face_strength = 0.0
|
| 388 |
-
depth_control_scale =
|
| 389 |
-
image_strength =
|
| 390 |
-
print("Adjusted parameters for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
st = time.time()
|
|
|
|
|
|
|
| 393 |
image = generate_image(
|
| 394 |
prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 395 |
guidance_scale, face_strength, depth_control_scale, repo_name,
|
|
@@ -401,7 +423,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 401 |
run_lora.zerogpu = True
|
| 402 |
|
| 403 |
|
| 404 |
-
@spaces.GPU(duration=
|
| 405 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale,
|
| 406 |
face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale,
|
| 407 |
sdxl_loras, selected_state_index, face_detected, st):
|
|
@@ -409,15 +431,17 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 409 |
|
| 410 |
print("Loaded state dict:", loaded_state_dict)
|
| 411 |
print("Last LoRA:", last_lora, "| Current LoRA:", repo_name)
|
| 412 |
-
print("LoRA scale:", lora_scale, "Type:", type(lora_scale))
|
| 413 |
|
| 414 |
-
#
|
|
|
|
|
|
|
| 415 |
if face_detected:
|
| 416 |
-
|
|
|
|
| 417 |
control_scales = [face_strength, depth_control_scale]
|
| 418 |
else:
|
| 419 |
-
#
|
| 420 |
-
control_images = [
|
| 421 |
control_scales = [depth_control_scale]
|
| 422 |
|
| 423 |
# Handle custom LoRA from HuggingFace
|
|
@@ -438,46 +462,17 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 438 |
# Improved LoRA loading and caching
|
| 439 |
if last_lora != repo_name:
|
| 440 |
if last_fused:
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
print("Unloaded previous LoRA adapter")
|
| 445 |
-
except Exception as e:
|
| 446 |
-
print(f"Warning: Could not unload previous adapter: {e}")
|
| 447 |
-
# Try alternative method
|
| 448 |
-
try:
|
| 449 |
-
pipe.unload_lora_weights()
|
| 450 |
-
print("Unloaded LoRA weights via alternative method")
|
| 451 |
-
except:
|
| 452 |
-
pass
|
| 453 |
-
|
| 454 |
-
try:
|
| 455 |
-
pipe.unload_textual_inversion()
|
| 456 |
-
print("Unloaded textual inversion")
|
| 457 |
-
except Exception as e:
|
| 458 |
-
print(f"Warning: Could not unload textual inversion: {e}")
|
| 459 |
|
| 460 |
# Load LoRA with better error handling
|
| 461 |
try:
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
# Single file loading
|
| 465 |
-
import os
|
| 466 |
-
lora_dir = os.path.dirname(full_path_lora)
|
| 467 |
-
lora_file = os.path.basename(full_path_lora)
|
| 468 |
-
print(f"Loading LoRA from: {lora_dir}/{lora_file}")
|
| 469 |
-
pipe.load_lora_weights(lora_dir, weight_name=lora_file, adapter_name="style_lora")
|
| 470 |
-
else:
|
| 471 |
-
# Directory loading
|
| 472 |
-
print(f"Loading LoRA from directory: {full_path_lora}")
|
| 473 |
-
pipe.load_lora_weights(full_path_lora, adapter_name="style_lora")
|
| 474 |
-
|
| 475 |
-
# Set adapter scale instead of fusing
|
| 476 |
-
pipe.set_adapters(["style_lora"], adapter_weights=[float(lora_scale)])
|
| 477 |
-
print(f"LoRA loaded and adapter set with scale: {lora_scale}")
|
| 478 |
last_fused = True
|
| 479 |
|
| 480 |
-
# Handle pivotal tuning embeddings
|
| 481 |
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 482 |
if is_pivotal:
|
| 483 |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
|
@@ -496,20 +491,15 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 496 |
tokenizer=pipe.tokenizer_2
|
| 497 |
)
|
| 498 |
except Exception as e:
|
| 499 |
-
import traceback
|
| 500 |
-
full_error = traceback.format_exc()
|
| 501 |
print(f"Error loading LoRA: {e}")
|
| 502 |
-
|
| 503 |
-
print(f"Full path attempted: {full_path_lora}")
|
| 504 |
-
print(f"LoRA scale attempted: {lora_scale} (type: {type(lora_scale)})")
|
| 505 |
-
raise gr.Error(f"Failed to load LoRA: {str(e)}\n\nPath: {full_path_lora}\nScale: {lora_scale}")
|
| 506 |
|
| 507 |
print("Processing prompt...")
|
| 508 |
conditioning, pooled = compel(prompt)
|
| 509 |
negative_conditioning, negative_pooled = compel(negative) if negative else (None, None)
|
| 510 |
|
| 511 |
-
# Enhanced generation parameters
|
| 512 |
-
num_inference_steps =
|
| 513 |
|
| 514 |
print("Generating image...")
|
| 515 |
image = pipe(
|
|
@@ -521,7 +511,7 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 521 |
height=face_image.height,
|
| 522 |
image_embeds=face_emb if face_detected else None,
|
| 523 |
image=face_image,
|
| 524 |
-
strength=1-image_strength,
|
| 525 |
control_image=control_images,
|
| 526 |
num_inference_steps=num_inference_steps,
|
| 527 |
guidance_scale=guidance_scale,
|
|
@@ -656,12 +646,12 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 656 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 657 |
title = gr.HTML(
|
| 658 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 659 |
-
<span>
|
| 660 |
font-size: 13px;
|
| 661 |
display: block;
|
| 662 |
font-weight: normal;
|
| 663 |
opacity: 0.75;
|
| 664 |
-
">🔥
|
| 665 |
elem_id="title",
|
| 666 |
)
|
| 667 |
selected_state = gr.State()
|
|
@@ -673,7 +663,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 673 |
photo = gr.Image(label="Upload a picture (with or without faces)", interactive=True, type="pil", height=300)
|
| 674 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected")
|
| 675 |
gallery = gr.Gallery(
|
| 676 |
-
label="
|
| 677 |
allow_preview=False,
|
| 678 |
columns=4,
|
| 679 |
elem_id="gallery",
|
|
@@ -700,18 +690,32 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 700 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 701 |
|
| 702 |
with gr.Accordion("Advanced options", open=False):
|
| 703 |
-
use_multiple_faces = gr.Checkbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
negative = gr.Textbox(label="Negative Prompt")
|
| 705 |
-
weight = gr.Slider(0, 10, value=0
|
| 706 |
-
face_strength = gr.Slider(
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
|
| 713 |
prompt_title = gr.Markdown(
|
| 714 |
-
value="### Click
|
| 715 |
visible=True,
|
| 716 |
elem_id="selected_lora",
|
| 717 |
)
|
|
@@ -761,4 +765,4 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 761 |
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras])
|
| 762 |
|
| 763 |
demo.queue(default_concurrency_limit=None, api_open=True)
|
| 764 |
-
demo.launch()
|
|
|
|
| 38 |
|
| 39 |
from gradio_imageslider import ImageSlider
|
| 40 |
|
| 41 |
+
# Load LoRA configurations - now only LucasArts style
|
| 42 |
with open("sdxl_loras.json", "r") as file:
|
| 43 |
data = json.load(file)
|
| 44 |
sdxl_loras_raw = [
|
|
|
|
| 123 |
print('Loading VAE took: ', et - st, 'seconds')
|
| 124 |
|
| 125 |
st = time.time()
|
| 126 |
+
# CHANGED: Using AlbedoBase XL v2.1 for better quality
|
| 127 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 128 |
+
"frankjoshua/albedobaseXL_v21",
|
| 129 |
vae=vae,
|
| 130 |
controlnet=[identitynet, zoedepthnet],
|
| 131 |
torch_dtype=torch.float16
|
|
|
|
| 133 |
|
| 134 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 135 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 136 |
+
# IMPROVED: Higher IP adapter scale for better face preservation
|
| 137 |
+
pipe.set_ip_adapter_scale(1.0)
|
| 138 |
et = time.time()
|
| 139 |
print('Loading pipeline took: ', et - st, 'seconds')
|
| 140 |
|
|
|
|
| 159 |
last_fused = False
|
| 160 |
lora_archive = "/data"
|
| 161 |
|
| 162 |
+
# Enhanced face detection with better face quality filtering
|
| 163 |
def detect_faces(face_image, use_multiple_faces=False):
|
| 164 |
"""
|
| 165 |
+
Detect faces in the image with quality filtering
|
| 166 |
Returns: list of face info dictionaries, or empty list if no faces
|
| 167 |
"""
|
| 168 |
try:
|
|
|
|
| 172 |
print("No faces detected")
|
| 173 |
return []
|
| 174 |
|
| 175 |
+
# Filter faces by quality score if available
|
| 176 |
+
filtered_faces = []
|
| 177 |
+
for face_info in face_info_list:
|
| 178 |
+
# Check if face has minimum quality
|
| 179 |
+
if 'det_score' in face_info and face_info['det_score'] > 0.5:
|
| 180 |
+
filtered_faces.append(face_info)
|
| 181 |
+
elif 'det_score' not in face_info:
|
| 182 |
+
filtered_faces.append(face_info)
|
| 183 |
+
|
| 184 |
+
if not filtered_faces:
|
| 185 |
+
print("No high-quality faces detected")
|
| 186 |
+
return []
|
| 187 |
+
|
| 188 |
# Sort faces by size (largest first)
|
| 189 |
+
filtered_faces = sorted(
|
| 190 |
+
filtered_faces,
|
| 191 |
key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]),
|
| 192 |
reverse=True
|
| 193 |
)
|
| 194 |
|
| 195 |
if use_multiple_faces:
|
| 196 |
+
print(f"Detected {len(filtered_faces)} high-quality faces")
|
| 197 |
+
return filtered_faces
|
| 198 |
else:
|
| 199 |
+
print(f"Using largest face (detected {len(filtered_faces)} total)")
|
| 200 |
+
return [filtered_faces[0]]
|
| 201 |
|
| 202 |
except Exception as e:
|
| 203 |
print(f"Face detection error: {e}")
|
| 204 |
return []
|
| 205 |
|
| 206 |
+
def process_face_embeddings_separately(face_info_list):
|
| 207 |
"""
|
| 208 |
+
Process face embeddings separately for multi-face generation
|
| 209 |
+
Returns: list of individual face embeddings
|
| 210 |
"""
|
| 211 |
if not face_info_list:
|
| 212 |
+
return []
|
|
|
|
|
|
|
|
|
|
| 213 |
|
|
|
|
| 214 |
embeddings = [face_info['embedding'] for face_info in face_info_list]
|
| 215 |
+
return embeddings
|
|
|
|
| 216 |
|
| 217 |
def create_face_kps_image(face_image, face_info_list):
|
| 218 |
"""
|
| 219 |
+
Create keypoints image from face info with enhanced visibility
|
| 220 |
"""
|
| 221 |
if not face_info_list:
|
| 222 |
return face_image
|
| 223 |
|
| 224 |
+
# For multiple faces, draw all keypoints with different colors
|
| 225 |
if len(face_info_list) > 1:
|
| 226 |
return draw_multiple_kps(face_image, [f['kps'] for f in face_info_list])
|
| 227 |
else:
|
|
|
|
| 229 |
|
| 230 |
def draw_multiple_kps(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
| 231 |
"""
|
| 232 |
+
Draw keypoints for multiple faces with enhanced visibility
|
| 233 |
"""
|
| 234 |
stickwidth = 4
|
| 235 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
|
|
|
| 237 |
w, h = image_pil.size
|
| 238 |
out_img = np.zeros([h, w, 3])
|
| 239 |
|
| 240 |
+
for idx, kps in enumerate(kps_list):
|
| 241 |
kps = np.array(kps)
|
| 242 |
+
# Use different colors for different faces
|
| 243 |
+
color_offset = idx % len(color_list)
|
| 244 |
|
| 245 |
for i in range(len(limbSeq)):
|
| 246 |
index = limbSeq[i]
|
| 247 |
+
color = color_list[(index[0] + color_offset) % len(color_list)]
|
| 248 |
|
| 249 |
x = kps[index][:, 0]
|
| 250 |
y = kps[index][:, 1]
|
|
|
|
| 258 |
out_img = (out_img * 0.6).astype(np.uint8)
|
| 259 |
|
| 260 |
for idx_kp, kp in enumerate(kps):
|
| 261 |
+
color = color_list[(idx_kp + color_offset) % len(color_list)]
|
| 262 |
x, y = kp
|
| 263 |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
| 264 |
|
|
|
|
| 273 |
|
| 274 |
for lora_list in lora_defaults:
|
| 275 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 276 |
+
face_strength = lora_list.get("face_strength", 1.0)
|
| 277 |
+
image_strength = lora_list.get("image_strength", 0.15)
|
| 278 |
+
weight = lora_list.get("weight", 1.0)
|
| 279 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
| 280 |
negative = lora_list.get("negative", "")
|
| 281 |
|
|
|
|
| 321 |
guidance_scale, depth_control_scale, sdxl_loras, custom_lora, use_multiple_faces=False,
|
| 322 |
progress=gr.Progress(track_tqdm=True)):
|
| 323 |
"""
|
| 324 |
+
Enhanced run_lora with improved face preservation and landscape mode
|
|
|
|
|
|
|
|
|
|
| 325 |
"""
|
| 326 |
print("Custom LoRA:", custom_lora)
|
| 327 |
custom_lora_path = custom_lora[0] if custom_lora else None
|
|
|
|
| 330 |
st = time.time()
|
| 331 |
face_image = resize_image_aspect_ratio(face_image)
|
| 332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
# Enhanced face detection
|
| 334 |
face_info_list = detect_faces(face_image, use_multiple_faces)
|
| 335 |
face_detected = len(face_info_list) > 0
|
| 336 |
|
| 337 |
if face_detected:
|
| 338 |
+
# CHANGED: Process faces separately instead of averaging
|
| 339 |
+
face_embeddings = process_face_embeddings_separately(face_info_list)
|
| 340 |
face_kps = create_face_kps_image(face_image, face_info_list)
|
| 341 |
+
print(f"Processing with {len(face_info_list)} face(s) separately")
|
| 342 |
+
|
| 343 |
+
# For multiple faces, we'll generate with the primary face (largest)
|
| 344 |
+
face_emb = face_embeddings[0]
|
| 345 |
else:
|
| 346 |
face_emb = None
|
| 347 |
face_kps = face_image
|
| 348 |
+
print("No faces detected - using enhanced landscape/depth mode")
|
| 349 |
|
| 350 |
et = time.time()
|
| 351 |
print('Face processing took:', et - st, 'seconds')
|
|
|
|
| 362 |
if prompt_full:
|
| 363 |
prompt = prompt_full.replace("<subject>", prompt)
|
| 364 |
|
| 365 |
+
# Add LucasArts trigger word if not present
|
| 366 |
+
if "lucasarts artstyle" not in prompt.lower():
|
| 367 |
+
prompt = f"{prompt}, lucasarts artstyle"
|
| 368 |
+
|
| 369 |
print("Prompt:", prompt)
|
| 370 |
if prompt == "":
|
| 371 |
+
prompt = "a beautiful cinematic scene" if not face_detected else "a person in cinematic lighting"
|
| 372 |
print(f"Executing prompt: {prompt}")
|
| 373 |
|
| 374 |
if negative == "":
|
| 375 |
+
# Enhanced negative prompt
|
| 376 |
+
if not face_detected:
|
| 377 |
+
negative = "worst quality, low quality, blurry, distorted, deformed, ugly, bad anatomy"
|
| 378 |
+
else:
|
| 379 |
+
negative = "worst quality, low quality, blurry, distorted, deformed, ugly, bad anatomy, bad proportions"
|
| 380 |
|
| 381 |
print("Custom Loaded LoRA:", custom_lora_path)
|
| 382 |
|
| 383 |
+
if not selected_state and not custom_lora_path:
|
| 384 |
+
raise gr.Error("You must select a style")
|
| 385 |
+
elif custom_lora_path:
|
| 386 |
repo_name = custom_lora_path
|
| 387 |
full_path_lora = custom_lora_path
|
| 388 |
else:
|
|
|
|
| 396 |
et = time.time()
|
| 397 |
print('Prompt processing took:', et - st, 'seconds')
|
| 398 |
|
| 399 |
+
# IMPROVED: Better parameter adjustment for face/landscape modes
|
| 400 |
if not face_detected:
|
| 401 |
+
# Enhanced landscape mode parameters
|
| 402 |
face_strength = 0.0
|
| 403 |
+
depth_control_scale = 1.0 # Maximum depth control for landscapes
|
| 404 |
+
image_strength = 0.25 # Higher structure preservation
|
| 405 |
+
print("Adjusted parameters for enhanced landscape mode")
|
| 406 |
+
else:
|
| 407 |
+
# Enhanced face preservation
|
| 408 |
+
face_strength = max(face_strength, 1.0) # Ensure strong face preservation
|
| 409 |
+
depth_control_scale = max(depth_control_scale, 0.8) # Good depth control
|
| 410 |
+
print("Adjusted parameters for enhanced face preservation")
|
| 411 |
|
| 412 |
st = time.time()
|
| 413 |
+
|
| 414 |
+
# Generate single image with best face (or landscape)
|
| 415 |
image = generate_image(
|
| 416 |
prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 417 |
guidance_scale, face_strength, depth_control_scale, repo_name,
|
|
|
|
| 423 |
run_lora.zerogpu = True
|
| 424 |
|
| 425 |
|
| 426 |
+
@spaces.GPU(duration=90) # Increased duration for better quality
|
| 427 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale,
|
| 428 |
face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale,
|
| 429 |
sdxl_loras, selected_state_index, face_detected, st):
|
|
|
|
| 431 |
|
| 432 |
print("Loaded state dict:", loaded_state_dict)
|
| 433 |
print("Last LoRA:", last_lora, "| Current LoRA:", repo_name)
|
|
|
|
| 434 |
|
| 435 |
+
# IMPROVED: Better control image preparation
|
| 436 |
+
depth_image = zoe(face_image)
|
| 437 |
+
|
| 438 |
if face_detected:
|
| 439 |
+
# Face mode: use both face keypoints and depth
|
| 440 |
+
control_images = [face_kps, depth_image]
|
| 441 |
control_scales = [face_strength, depth_control_scale]
|
| 442 |
else:
|
| 443 |
+
# Landscape mode: only depth control with enhanced parameters
|
| 444 |
+
control_images = [depth_image]
|
| 445 |
control_scales = [depth_control_scale]
|
| 446 |
|
| 447 |
# Handle custom LoRA from HuggingFace
|
|
|
|
| 462 |
# Improved LoRA loading and caching
|
| 463 |
if last_lora != repo_name:
|
| 464 |
if last_fused:
|
| 465 |
+
pipe.unfuse_lora()
|
| 466 |
+
pipe.unload_lora_weights()
|
| 467 |
+
pipe.unload_textual_inversion()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
# Load LoRA with better error handling
|
| 470 |
try:
|
| 471 |
+
pipe.load_lora_weights(full_path_lora)
|
| 472 |
+
pipe.fuse_lora(lora_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
last_fused = True
|
| 474 |
|
| 475 |
+
# Handle pivotal tuning embeddings (if needed for future LoRAs)
|
| 476 |
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 477 |
if is_pivotal:
|
| 478 |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
|
|
|
| 491 |
tokenizer=pipe.tokenizer_2
|
| 492 |
)
|
| 493 |
except Exception as e:
|
|
|
|
|
|
|
| 494 |
print(f"Error loading LoRA: {e}")
|
| 495 |
+
raise gr.Error(f"Failed to load LoRA: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 496 |
|
| 497 |
print("Processing prompt...")
|
| 498 |
conditioning, pooled = compel(prompt)
|
| 499 |
negative_conditioning, negative_pooled = compel(negative) if negative else (None, None)
|
| 500 |
|
| 501 |
+
# IMPROVED: Enhanced generation parameters for better quality
|
| 502 |
+
num_inference_steps = 50 # Increased for better quality
|
| 503 |
|
| 504 |
print("Generating image...")
|
| 505 |
image = pipe(
|
|
|
|
| 511 |
height=face_image.height,
|
| 512 |
image_embeds=face_emb if face_detected else None,
|
| 513 |
image=face_image,
|
| 514 |
+
strength=1-image_strength, # Higher strength = more transformation
|
| 515 |
control_image=control_images,
|
| 516 |
num_inference_steps=num_inference_steps,
|
| 517 |
guidance_scale=guidance_scale,
|
|
|
|
| 646 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 647 |
title = gr.HTML(
|
| 648 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 649 |
+
<span>LucasArts Style - Enhanced Face Preservation<br><small style="
|
| 650 |
font-size: 13px;
|
| 651 |
display: block;
|
| 652 |
font-weight: normal;
|
| 653 |
opacity: 0.75;
|
| 654 |
+
">🔥 Improved: Better face identity preservation, Enhanced landscape mode, Multiple face support<br>AlbedoBase XL v2.1 + InstantID + ControlNet</small></span></h1>""",
|
| 655 |
elem_id="title",
|
| 656 |
)
|
| 657 |
selected_state = gr.State()
|
|
|
|
| 663 |
photo = gr.Image(label="Upload a picture (with or without faces)", interactive=True, type="pil", height=300)
|
| 664 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected")
|
| 665 |
gallery = gr.Gallery(
|
| 666 |
+
label="LucasArts Style",
|
| 667 |
allow_preview=False,
|
| 668 |
columns=4,
|
| 669 |
elem_id="gallery",
|
|
|
|
| 690 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 691 |
|
| 692 |
with gr.Accordion("Advanced options", open=False):
|
| 693 |
+
use_multiple_faces = gr.Checkbox(
|
| 694 |
+
label="Process multiple faces separately",
|
| 695 |
+
value=False,
|
| 696 |
+
info="Generate separate outputs for each detected face"
|
| 697 |
+
)
|
| 698 |
negative = gr.Textbox(label="Negative Prompt")
|
| 699 |
+
weight = gr.Slider(0, 10, value=1.0, step=0.1, label="LoRA weight")
|
| 700 |
+
face_strength = gr.Slider(
|
| 701 |
+
0, 2, value=1.0, step=0.01, label="Face identity strength",
|
| 702 |
+
info="Higher = stronger face preservation (auto-adjusted for landscapes)"
|
| 703 |
+
)
|
| 704 |
+
image_strength = gr.Slider(
|
| 705 |
+
0, 1, value=0.15, step=0.01, label="Image structure strength",
|
| 706 |
+
info="Lower = more transformation, Higher = more original structure"
|
| 707 |
+
)
|
| 708 |
+
guidance_scale = gr.Slider(
|
| 709 |
+
0, 50, value=7.5, step=0.1, label="Guidance Scale",
|
| 710 |
+
info="How closely to follow the prompt"
|
| 711 |
+
)
|
| 712 |
+
depth_control_scale = gr.Slider(
|
| 713 |
+
0, 1, value=0.8, step=0.01, label="Depth ControlNet strength",
|
| 714 |
+
info="3D structure preservation (auto-maximized for landscapes)"
|
| 715 |
+
)
|
| 716 |
|
| 717 |
prompt_title = gr.Markdown(
|
| 718 |
+
value="### Click 'Run' to generate with LucasArts style",
|
| 719 |
visible=True,
|
| 720 |
elem_id="selected_lora",
|
| 721 |
)
|
|
|
|
| 765 |
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras])
|
| 766 |
|
| 767 |
demo.queue(default_concurrency_limit=None, api_open=True)
|
| 768 |
+
demo.launch(share=True)
|