Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
e1e0ecc
0
Parent(s):
Initial commit
Browse files- .gitignore +63 -0
- Dockerfile +16 -0
- README.md +34 -0
- app.py +52 -0
- requirements.txt +10 -0
- runtime.txt +1 -0
- src/auth.py +17 -0
- src/encoder.py +60 -0
- src/models.py +40 -0
- src/utils.py +90 -0
.gitignore
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-related files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.swp
|
| 5 |
+
.DS_Store
|
| 6 |
+
*.egg-info/
|
| 7 |
+
|
| 8 |
+
# Virtual environment
|
| 9 |
+
venv/
|
| 10 |
+
env/
|
| 11 |
+
*.venv/
|
| 12 |
+
|
| 13 |
+
# Jupyter Notebooks checkpoints
|
| 14 |
+
.ipynb_checkpoints/
|
| 15 |
+
|
| 16 |
+
# Logs
|
| 17 |
+
logs/
|
| 18 |
+
*.log
|
| 19 |
+
|
| 20 |
+
# Hugging Face Transformers cache
|
| 21 |
+
~/.cache/huggingface/
|
| 22 |
+
|
| 23 |
+
# Docker-related files
|
| 24 |
+
*.dockerignore
|
| 25 |
+
|
| 26 |
+
# Ignore compiled code
|
| 27 |
+
*.so
|
| 28 |
+
*.o
|
| 29 |
+
*.out
|
| 30 |
+
*.a
|
| 31 |
+
|
| 32 |
+
# Ignore OS-specific files
|
| 33 |
+
Thumbs.db
|
| 34 |
+
ehthumbs.db
|
| 35 |
+
|
| 36 |
+
# Ignore FastAPI auto-generated files
|
| 37 |
+
*.db
|
| 38 |
+
instance/
|
| 39 |
+
.env
|
| 40 |
+
.env.local
|
| 41 |
+
.env.*.local
|
| 42 |
+
|
| 43 |
+
# VS Code settings
|
| 44 |
+
.vscode/
|
| 45 |
+
.history/
|
| 46 |
+
|
| 47 |
+
# Ignore dependency files
|
| 48 |
+
pip-log.txt
|
| 49 |
+
pip-delete-this-directory.txt
|
| 50 |
+
|
| 51 |
+
# Ignore coverage files
|
| 52 |
+
.coverage
|
| 53 |
+
htmlcov/
|
| 54 |
+
coverage.xml
|
| 55 |
+
|
| 56 |
+
# Ignore test-related files
|
| 57 |
+
.tox/
|
| 58 |
+
.pytest_cache/
|
| 59 |
+
nosetests.xml
|
| 60 |
+
test-reports/
|
| 61 |
+
|
| 62 |
+
# Ignore Hugging Face Spaces cache
|
| 63 |
+
space_runtime/
|
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
ENV HF_HOME=/app/hf_cache
|
| 6 |
+
ENV HF_TOKEN=${HF_TOKEN}
|
| 7 |
+
RUN mkdir -p /app/hf_cache && chmod 777 /app/hf_cache
|
| 8 |
+
|
| 9 |
+
COPY requirements.txt .
|
| 10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY . .
|
| 13 |
+
|
| 14 |
+
EXPOSE 7860
|
| 15 |
+
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
README.md
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: fclip_back
|
| 3 |
+
emoji: 🌖
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
license: cc-by-nc-4.0
|
| 9 |
+
short_description: Generate text and image embeddings for clothing items
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Install
|
| 13 |
+
|
| 14 |
+
```
|
| 15 |
+
git clone https://huggingface.co/spaces/precove/fclip_back
|
| 16 |
+
python -m venv venv
|
| 17 |
+
source venv/bin/activate
|
| 18 |
+
pip install -r requirements.txt
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
# Usage
|
| 22 |
+
|
| 23 |
+
### FastAPI
|
| 24 |
+
|
| 25 |
+
```
|
| 26 |
+
uvicorn app:app --host 0.0.0.0 --port 8080 --reload
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
### Docker
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
docker build -t fclip .
|
| 33 |
+
docker run -p 8080:7860 fclip
|
| 34 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
from fastapi import FastAPI, Depends
|
| 3 |
+
|
| 4 |
+
from src.encoder import FashionCLIPEncoder
|
| 5 |
+
from src.models import TextRequest, ImageRequest, Response
|
| 6 |
+
from src.auth import verify_token
|
| 7 |
+
from src.utils import delete_images
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
encoder = FashionCLIPEncoder(normalize=True)
|
| 11 |
+
app = FastAPI()
|
| 12 |
+
app.state.req_count = 0
|
| 13 |
+
COLLECT_GC_EVERY = 20
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@app.get("/")
|
| 17 |
+
async def root():
|
| 18 |
+
return {
|
| 19 |
+
"status": "ok",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@app.post("/encode_texts")
|
| 24 |
+
async def encode_texts(
|
| 25 |
+
request: TextRequest,
|
| 26 |
+
token: str = Depends(verify_token),
|
| 27 |
+
) -> Response:
|
| 28 |
+
embeddings = encoder.encode_text(request.texts)
|
| 29 |
+
response = Response(embeddings=embeddings)
|
| 30 |
+
|
| 31 |
+
return response
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@app.post("/encode_images")
|
| 35 |
+
async def encode_images(
|
| 36 |
+
request: ImageRequest,
|
| 37 |
+
token: str = Depends(verify_token),
|
| 38 |
+
) -> Response:
|
| 39 |
+
try:
|
| 40 |
+
images = request.download()
|
| 41 |
+
embeddings = encoder.encode_images(images)
|
| 42 |
+
return Response(embeddings=embeddings)
|
| 43 |
+
|
| 44 |
+
finally:
|
| 45 |
+
success = delete_images(images)
|
| 46 |
+
if not success:
|
| 47 |
+
print("Failed to delete images")
|
| 48 |
+
|
| 49 |
+
app.state.req_count += 1
|
| 50 |
+
|
| 51 |
+
if app.state.req_count % COLLECT_GC_EVERY == 0:
|
| 52 |
+
gc.collect()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.6.0
|
| 2 |
+
transformers==4.37.2
|
| 3 |
+
datasets==2.16.1
|
| 4 |
+
open-clip-torch>=2.23.0
|
| 5 |
+
huggingface-hub>=0.20.3
|
| 6 |
+
fastapi
|
| 7 |
+
uvicorn
|
| 8 |
+
pydantic
|
| 9 |
+
python-decouple
|
| 10 |
+
numpy==1.24.3
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.9.6
|
src/auth.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import HTTPException, Security
|
| 2 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 3 |
+
from decouple import config
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
API_TOKEN = config("API_TOKEN")
|
| 7 |
+
security = HTTPBearer()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def verify_token(credentials: HTTPAuthorizationCredentials = Security(security)):
|
| 11 |
+
if credentials.credentials != API_TOKEN:
|
| 12 |
+
raise HTTPException(
|
| 13 |
+
status_code=401,
|
| 14 |
+
detail="Invalid authentication credentials",
|
| 15 |
+
headers={"WWW-Authenticate": "Bearer"},
|
| 16 |
+
)
|
| 17 |
+
return credentials.credentials
|
src/encoder.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
from PIL.Image import Image
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModel, AutoProcessor
|
| 6 |
+
|
| 7 |
+
from .utils import normalize_vectors
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
MODEL_NAME = "Marqo/marqo-fashionCLIP"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class FashionCLIPEncoder:
|
| 14 |
+
def __init__(self, normalize: bool = False):
|
| 15 |
+
self.normalize = normalize
|
| 16 |
+
|
| 17 |
+
self.device = torch.device("cpu")
|
| 18 |
+
|
| 19 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 20 |
+
MODEL_NAME,
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
self.model = AutoModel.from_pretrained(
|
| 25 |
+
MODEL_NAME,
|
| 26 |
+
trust_remote_code=True,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
self.model.to(self.device)
|
| 30 |
+
self.model.eval()
|
| 31 |
+
|
| 32 |
+
def encode_text(self, texts: List[str]) -> List[List[float]]:
|
| 33 |
+
kwargs = {
|
| 34 |
+
"padding": "max_length",
|
| 35 |
+
"return_tensors": "pt",
|
| 36 |
+
"truncation": True,
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
inputs = self.processor(text=texts, **kwargs)
|
| 40 |
+
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
batch = {k: v.to(self.device) for k, v in inputs.items()}
|
| 43 |
+
vectors = self.model.get_text_features(**batch)
|
| 44 |
+
|
| 45 |
+
return self._postprocess_vectors(vectors)
|
| 46 |
+
|
| 47 |
+
def encode_images(self, images: List[Image]) -> List[List[float]]:
|
| 48 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
| 49 |
+
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
batch = {k: v.to(self.device) for k, v in inputs.items()}
|
| 52 |
+
vectors = self.model.get_image_features(**batch)
|
| 53 |
+
|
| 54 |
+
return self._postprocess_vectors(vectors)
|
| 55 |
+
|
| 56 |
+
def _postprocess_vectors(self, vectors: torch.Tensor) -> List[List[float]]:
|
| 57 |
+
if self.normalize:
|
| 58 |
+
vectors = normalize_vectors(vectors)
|
| 59 |
+
|
| 60 |
+
return vectors.detach().cpu().numpy().tolist()
|
src/models.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel, validator
|
| 2 |
+
from typing import List
|
| 3 |
+
from PIL.Image import Image
|
| 4 |
+
|
| 5 |
+
from .utils import download_image_as_pil
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
BATCH_SIZE_TEXT: int = 128
|
| 9 |
+
BATCH_SIZE_IMAGE: int = 64
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class TextRequest(BaseModel):
|
| 13 |
+
texts: List[str]
|
| 14 |
+
|
| 15 |
+
@validator("texts")
|
| 16 |
+
def validate_texts_batch_size(cls, v):
|
| 17 |
+
if len(v) > BATCH_SIZE_TEXT:
|
| 18 |
+
raise ValueError(f"Maximum batch size for texts is {BATCH_SIZE_TEXT}")
|
| 19 |
+
if len(v) == 0:
|
| 20 |
+
raise ValueError("At least one text is required")
|
| 21 |
+
return v
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ImageRequest(BaseModel):
|
| 25 |
+
urls: List[str]
|
| 26 |
+
|
| 27 |
+
@validator("urls")
|
| 28 |
+
def validate_images_batch_size(cls, v):
|
| 29 |
+
if len(v) > BATCH_SIZE_IMAGE:
|
| 30 |
+
raise ValueError(f"Maximum batch size for images is {BATCH_SIZE_IMAGE}")
|
| 31 |
+
if len(v) == 0:
|
| 32 |
+
raise ValueError("At least one image URL is required")
|
| 33 |
+
return v
|
| 34 |
+
|
| 35 |
+
def download(self) -> List[Image]:
|
| 36 |
+
return [download_image_as_pil(url) for url in self.urls]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class Response(BaseModel):
|
| 40 |
+
embeddings: List[List[float]]
|
src/utils.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List
|
| 2 |
+
|
| 3 |
+
import requests, torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
REQUESTS_HEADERS = {
|
| 8 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def download_image_as_pil(url: str, timeout: int = 10) -> Image.Image:
|
| 13 |
+
try:
|
| 14 |
+
response = requests.get(
|
| 15 |
+
url, stream=True, headers=REQUESTS_HEADERS, timeout=timeout
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
if response.status_code == 200:
|
| 19 |
+
return Image.open(response.raw)
|
| 20 |
+
|
| 21 |
+
except Exception as e:
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def delete_images(images: List[Image.Image]) -> bool:
|
| 26 |
+
try:
|
| 27 |
+
for image in images:
|
| 28 |
+
if hasattr(image, "close"):
|
| 29 |
+
image.close()
|
| 30 |
+
success = True
|
| 31 |
+
|
| 32 |
+
except Exception:
|
| 33 |
+
success = False
|
| 34 |
+
|
| 35 |
+
del images
|
| 36 |
+
|
| 37 |
+
return success
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def normalize_vectors(vectors: torch.Tensor) -> torch.Tensor:
|
| 41 |
+
norms = torch.norm(vectors, p=2, dim=1, keepdim=True)
|
| 42 |
+
norms = torch.norm(vectors, p=2, dim=1, keepdim=True)
|
| 43 |
+
norms = torch.where(norms > 1e-8, norms, torch.ones_like(norms))
|
| 44 |
+
normalized_vectors = vectors / norms
|
| 45 |
+
|
| 46 |
+
return normalized_vectors
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def analyze_model_parameters(model: torch.nn.Module) -> Dict:
|
| 50 |
+
total_params = 0
|
| 51 |
+
param_types = set()
|
| 52 |
+
param_type_counts = {}
|
| 53 |
+
|
| 54 |
+
for param in model.parameters():
|
| 55 |
+
total_params += param.numel()
|
| 56 |
+
dtype = param.dtype
|
| 57 |
+
param_types.add(dtype)
|
| 58 |
+
param_type_counts[dtype] = param_type_counts.get(dtype, 0) + param.numel()
|
| 59 |
+
|
| 60 |
+
results = {
|
| 61 |
+
"total_params": total_params,
|
| 62 |
+
"param_types": {},
|
| 63 |
+
"device_info": {
|
| 64 |
+
"device": next(model.parameters()).device,
|
| 65 |
+
"cuda_available": torch.cuda.is_available(),
|
| 66 |
+
},
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
for dtype in param_types:
|
| 70 |
+
count = param_type_counts[dtype]
|
| 71 |
+
percentage = (count / total_params) * 100
|
| 72 |
+
memory_bytes = count * torch.finfo(dtype).bits // 8
|
| 73 |
+
memory_mb = memory_bytes / (1024 * 1024)
|
| 74 |
+
|
| 75 |
+
results["param_types"][str(dtype)] = {
|
| 76 |
+
"count": count,
|
| 77 |
+
"percentage": percentage,
|
| 78 |
+
"memory_mb": memory_mb,
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
if torch.cuda.is_available():
|
| 82 |
+
results["device_info"].update(
|
| 83 |
+
{
|
| 84 |
+
"cuda_device": torch.cuda.get_device_name(0),
|
| 85 |
+
"cuda_memory_allocated_mb": torch.cuda.memory_allocated(0) / 1024**2,
|
| 86 |
+
"cuda_memory_cached_mb": torch.cuda.memory_reserved(0) / 1024**2,
|
| 87 |
+
}
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return results
|