#This app is running import streamlit as st from langchain_community.document_loaders import PyPDFLoader from langchain_mistralai.chat_models import ChatMistralAI from langchain_mistralai.embeddings import MistralAIEmbeddings from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain st.title("PDF Question Answering with LangChain") # Upload PDF uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) if uploaded_file: with open("uploaded.pdf", "wb") as f: f.write(uploaded_file.getbuffer()) # Load data loader = PyPDFLoader("uploaded.pdf") docs = loader.load() # Split text into chunks text_splitter = RecursiveCharacterTextSplitter() documents = text_splitter.split_documents(docs) # API Key input api_key = st.text_input("Enter your MistralAI API Key", type="password") if api_key: # Define the embedding model embeddings = MistralAIEmbeddings(model="mistral-embed", mistral_api_key=api_key) # Create the vector store vector = FAISS.from_documents(documents, embeddings) # Define a retriever interface retriever = vector.as_retriever() # Define LLM model = ChatMistralAI(mistral_api_key=api_key) # Define prompt template prompt = ChatPromptTemplate.from_template("""Answer the following question based only on the provided context: {context} Question: {input}""") # Create a retrieval chain to answer questions document_chain = create_stuff_documents_chain(model, prompt) retrieval_chain = create_retrieval_chain(retriever, document_chain) # User prompt input user_prompt = st.text_input("Enter your question") if user_prompt: with st.spinner("Processing..."): response = retrieval_chain.invoke({"input": user_prompt}) st.write(response["answer"]) else: st.write("Please upload a PDF file to get started.")