import streamlit as st import pandas as pd import numpy as np import pickle import json from datetime import date, datetime, time from tensorflow.keras.models import load_model # load model with open('final_pipeline.pkl', 'rb') as file_1: model_pipeline = pickle.load(file_1) model_ann = load_model('churn_model.h5') def run(): # membuat judul st.title('Churn Prediction') # membuat kolom input with st.form(key='Churn Status'): user_id = st.text_input('User ID', value='') age = st.number_input('Age', min_value=10, max_value=70, value=26, step=1) gender = st.radio('Gender', ('M','F')) region_category = st.selectbox('Region Category', ('Town','City','Village'),index=1) membership_category = st.selectbox('Membership Category', ('No Membership', 'Basic Membership', 'Silver Membership', 'Gold Membership', 'Premium Membership', 'Platinum Membership' ),index=1) joining_date = st.date_input('Joining Date', date.today()) joined_through_referral = st.radio('Join By Referral', ('Yes','No')) preferred_offer_types = st.selectbox('Preferred Offer Types', ('Gift Vouchers/Coupons','Credit/Debit Card Offers', 'Without Offers'),index=1) medium_of_operation = st.selectbox('Medium of Operation', ('Desktop', 'Smartphone', 'Both'),index=1) internet_option = st.selectbox('Internet Option', ('Wi-Fi', 'Mobile_Data', 'Fiber_Optic'),index=1) last_visit_time = st.time_input('Last Visit Time ', time(hour=9, minute=0)) days_since_last_login = st.number_input('Days Since Last Login', min_value=0, max_value=30, value=26, step=1) avg_time_spent = st.number_input('Average Time Spent', min_value=0, max_value=400, value=26, step=1) avg_transaction_value = st.number_input('Average Transaction Value ', min_value=750, max_value=100000, value=800, step=50) avg_frequency_login_days = st.number_input('Average Frequency Login Days', min_value=0, max_value=70, value=26, step=1) points_in_wallet = st.number_input('Points In Wallet', min_value=0, max_value=2100, value=260, step=10) used_special_discount = st.radio('Use Special Discount', ('Yes','No')) offer_application_preference = st.radio('Offer Application Preference', ('Yes','No')) past_complaint = st.radio('Past Complain', ('Yes','No')) complaint_status = st.selectbox('Complaint Status', ('Not Applicable','Unsolved', 'Solved', 'Solved in Follow-up', 'No Information Available'),index=1) feedback = st.selectbox('Feedback', ('Poor Product Quality','No reason specified', 'Too many ads', 'Poor Website', 'Poor Customer Service', 'Reasonable Price', 'User Friendly Website', 'Products always in Stock', 'Quality Customer Care'),index=1) submitted = st.form_submit_button('Predict') # membuat data-set baru data_inf = { 'user_id':user_id, 'age':age, 'gender':gender, 'region_category':region_category, 'membership_category':membership_category, 'joining_date':joining_date, 'joined_through_referral':joined_through_referral, 'preferred_offer_types': preferred_offer_types, 'medium_of_operation': medium_of_operation, 'internet_option': internet_option, 'last_visit_time':last_visit_time, 'days_since_last_login': days_since_last_login, 'avg_time_spent': avg_time_spent, 'avg_transaction_value':avg_transaction_value, 'avg_frequency_login_days': avg_frequency_login_days, 'points_in_wallet': points_in_wallet, 'used_special_discount': used_special_discount, 'offer_application_preference': offer_application_preference, 'past_complaint': past_complaint, 'complaint_status': complaint_status, 'feedback': feedback } data_inf = pd.DataFrame([data_inf]) st.dataframe(data_inf) if submitted: # transform inference-Set data_inf_transform = model_pipeline.transform(data_inf) # predict using neural network y_pred_inf = model_ann.predict(data_inf_transform) y_pred_inf = np.where(y_pred_inf >= 0.5, 1, 0) churn_prediction = "Yes" if y_pred_inf == 1 else "No" st.write('# Churn : ', churn_prediction) if __name__ == '__main__': run()