from openai import OpenAI prompt_dict = { 'kimi': [ {"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。"}, {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"}, {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},], 'deepseek': [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"}, {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},], 'deepseek_TN': [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "你好,现在我们在处理TTS的文本输入,下面将会给你输入一段文本,请你将其中的阿拉伯数字等等转为文字表达,并且输出的文本里仅包含逗号和句号这两个标点符号"}, {"role": "assistant", "content": "好的,我现在对TTS的文本输入进行处理。这一般叫做text normalization。下面请输入"}, {"role": "user", "content": "We paid $123 for this desk."}, {"role": "assistant", "content": "We paid one hundred and twenty three dollars for this desk."}, {"role": "user", "content": "详询请拨打010-724654"}, {"role": "assistant", "content": "详询请拨打零幺零,七二四六五四"}, {"role": "user", "content": "罗森宣布将于7月24日退市,在华门店超6000家!"}, {"role": "assistant", "content": "罗森宣布将于七月二十四日退市,在华门店超过六千家。"}, ], } class llm_api: def __init__(self, api_key, base_url, model): self.client = OpenAI( api_key = api_key, base_url = base_url, ) self.model = model def call(self, user_question, temperature = 0.3, prompt_version='kimi', **kwargs): completion = self.client.chat.completions.create( model = self.model, messages = prompt_dict[prompt_version]+[{"role": "user", "content": user_question},], temperature = temperature, **kwargs ) return completion.choices[0].message.content