import os import gradio as gr from huggingface_hub import InferenceClient import torch from transformers import AutoTokenizer from model.modeling_llamask import LlamaskForCausalLM from model.tokenizer_utils import generate_custom_mask, prepare_tokenizer access_token = os.getenv("HF_TOKEN") model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" device = 'cuda' model = LlamaskForCausalLM.from_pretrained(model_id, torch_dtype= torch.bfloat16, token=access_token) model = model.to(device) model.load_adapter('theostos/zLlamask', adapter_name="zzlamask") tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left") prepare_tokenizer(tokenizer) def respond( message, history: list[tuple[str, str]], max_tokens, temperature, ): prompt = f"""<|start_header_id|>system<|end_header_id|> You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|> {message} <|eot_id|><|start_header_id|>assistant<|end_header_id|> """ model_inputs = generate_custom_mask(tokenizer, [prompt], device) model.disable_adapters() outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs) outputs = outputs[:, model_inputs['input_ids'].shape[1]:] result_no_ft = tokenizer.batch_decode(outputs, skip_special_tokens=True) model.enable_adapters() outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs) outputs = outputs[:, model_inputs['input_ids'].shape[1]:] result_ft = tokenizer.batch_decode(outputs, skip_special_tokens=True) return f"Without finetuning:\n{result_no_ft}\n\nWith finetuning:\n{result_ft}" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), ], ) if __name__ == "__main__": demo.launch()