import argparse import json import re import uuid from pathlib import Path import gensim from concrete.ml.common.serialization.loaders import load def load_models(): base_dir = Path(__file__).parent embeddings_model = gensim.models.FastText.load(str(base_dir / "embedded_model.model")) with open(base_dir / "cml_xgboost.model", "r") as model_file: fhe_ner_detection = load(file=model_file) return embeddings_model, fhe_ner_detection def anonymize_text(text, embeddings_model, fhe_ner_detection): token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)" tokens = re.findall(token_pattern, text) uuid_map = {} processed_tokens = [] for token in tokens: if token.strip() and re.match(r"\w+", token): # If the token is a word x = embeddings_model.wv[token][None] prediction_proba = fhe_ner_detection.predict_proba(x) probability = prediction_proba[0][1] prediction = probability >= 0.5 if prediction: if token not in uuid_map: uuid_map[token] = str(uuid.uuid4())[:8] processed_tokens.append(uuid_map[token]) else: processed_tokens.append(token) else: processed_tokens.append(token) # Preserve punctuation and spaces as is return uuid_map def main(): parser = argparse.ArgumentParser(description="Anonymize named entities in a text file and save the mapping to a JSON file.") parser.add_argument("file_path", type=str, help="The path to the file to be processed.") args = parser.parse_args() embeddings_model, fhe_ner_detection = load_models() # Read the input file with open(args.file_path, 'r', encoding='utf-8') as file: text = file.read() # Anonymize the text uuid_map = anonymize_text(text, embeddings_model, fhe_ner_detection) # Save the UUID mapping to a JSON file mapping_path = Path(args.file_path).stem + "_uuid_mapping.json" with open(mapping_path, 'w', encoding='utf-8') as file: json.dump(uuid_map, file, indent=4, sort_keys=True) print(f"UUID mapping saved to {mapping_path}") if __name__ == "__main__": main()