import gradio as gr import subprocess from concrete.ml.deployment import FHEModelClient from requests import head import numpy import os from pathlib import Path import requests import json import base64 import shutil import time import pandas as pd import pickle import numpy as np import pdb # This repository's directory REPO_DIR = Path(__file__).parent subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) # subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR) # if not exists, create a directory for the FHE keys called .fhe_keys if not os.path.exists(".fhe_keys"): os.mkdir(".fhe_keys") # if not exists, create a directory for the tmp files called tmp if not os.path.exists("tmp"): os.mkdir("tmp") # Wait 5 sec for the server to start time.sleep(5) # Encrypted data limit for the browser to display # (encrypted data is too large to display in the browser) ENCRYPTED_DATA_BROWSER_LIMIT = 500 N_USER_KEY_STORED = 20 #Evaluation Key eval_key = [] #Encodings vector encodings = [] #User ID user_id = [] def clean_tmp_directory(): # Allow 20 user keys to be stored. # Once that limitation is reached, deleted the oldest. path_sub_directories = sorted( [f for f in Path(".fhe_keys/").iterdir() if f.is_dir()], key=os.path.getmtime ) user_ids = [] if len(path_sub_directories) > N_USER_KEY_STORED: n_files_to_delete = len(path_sub_directories) - N_USER_KEY_STORED for p in path_sub_directories[:n_files_to_delete]: user_ids.append(p.name) shutil.rmtree(p) list_files_tmp = Path("tmp/").iterdir() # Delete all files related to user_id for file in list_files_tmp: for user_id in user_ids: if file.name.endswith(f"{user_id}.npy"): file.unlink() def keygen(eval_key, user_id): # Clean tmp directory if needed clean_tmp_directory() print("Initializing FHEModelClient...") # Let's create a user_id user_id = numpy.random.randint(0, 2**32) fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}") fhe_api.load() # Generate a fresh key fhe_api.generate_private_and_evaluation_keys(force=True) evaluation_key = fhe_api.get_serialized_evaluation_keys() numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key) eval_key = list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT] return eval_key, user_id def encode_quantize(test_file, eval_key, encodings): ugly = ['Machine', 'SizeOfOptionalHeader', 'Characteristics', 'MajorLinkerVersion', 'MinorLinkerVersion', 'SizeOfCode', 'SizeOfInitializedData', 'SizeOfUninitializedData', 'AddressOfEntryPoint', 'BaseOfCode', 'BaseOfData', 'ImageBase', 'SectionAlignment', 'FileAlignment', 'MajorOperatingSystemVersion', 'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion', 'MajorSubsystemVersion', 'MinorSubsystemVersion', 'SizeOfImage', 'SizeOfHeaders', 'CheckSum', 'Subsystem', 'DllCharacteristics', 'SizeOfStackReserve', 'SizeOfStackCommit', 'SizeOfHeapReserve', 'SizeOfHeapCommit', 'LoaderFlags', 'NumberOfRvaAndSizes', 'SectionsNb', 'SectionsMeanEntropy', 'SectionsMinEntropy', 'SectionsMaxEntropy', 'SectionsMeanRawsize', 'SectionsMinRawsize', 'SectionsMeanVirtualsize', 'SectionsMinVirtualsize', 'SectionMaxVirtualsize', 'ImportsNbDLL', 'ImportsNb', 'ImportsNbOrdinal', 'ExportNb', 'ResourcesNb', 'ResourcesMeanEntropy', 'ResourcesMinEntropy', 'ResourcesMaxEntropy', 'ResourcesMeanSize', 'ResourcesMinSize', 'ResourcesMaxSize', 'LoadConfigurationSize', 'VersionInformationSize'] fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{eval_key}") fhe_api.load() from PE_main import extract_infos # expect [1, 53] but we get (53) # pdb.set_trace() # features = pickle.loads(open(os.path.join("features.pkl"), "rb").read()) encodings = extract_infos(test_file) encodings = list(map(lambda x: encodings[x], ugly)) encodings = np.array(encodings).reshape(1, -1) return encodings def encrypt_encoded_quantize(encodings, user_id, eval_key): fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}") fhe_api.load() encodings = np.array(encodings) print(encodings) quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8) print(quantized_encodings) encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings) print(encrypted_quantized_encoding) numpy.save( f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy", encrypted_quantized_encoding, ) # Compute size encrypted_quantized_encoding_shorten = list(encrypted_quantized_encoding)[:ENCRYPTED_DATA_BROWSER_LIMIT] encrypted_quantized_encoding_shorten_hex = "".join(f"{i:02x}" for i in encrypted_quantized_encoding_shorten) return (encrypted_quantized_encoding_shorten_hex) def run_fhe(user_id): encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy") encrypted_quantized_encoding = numpy.load(encoded_data_path) # Read evaluation_key from the file evaluation_key = numpy.load(f"tmp/tmp_evaluation_key_{user_id}.npy") # Use base64 to encode the encodings and evaluation key encrypted_quantized_encoding = base64.b64encode(encrypted_quantized_encoding).decode() encoded_evaluation_key = base64.b64encode(evaluation_key).decode() query = {} query["evaluation_key"] = encoded_evaluation_key query["encrypted_encoding"] = encrypted_quantized_encoding headers = {"Content-type": "application/json"} response = requests.post( "http://localhost:8000/predict", data=json.dumps(query), headers=headers, ) encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"]) numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction) encrypted_prediction_shorten = list(encrypted_prediction)[:ENCRYPTED_DATA_BROWSER_LIMIT] encrypted_prediction_shorten_hex = "".join(f"{i:02x}" for i in encrypted_prediction_shorten) return encrypted_prediction_shorten_hex def decrypt_prediction(user_id): encoded_data_path = Path(f"tmp/tmp_encrypted_prediction_{user_id}.npy") # Read encrypted_prediction from the file encrypted_prediction = numpy.load(encoded_data_path).tobytes() fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}") fhe_api.load() # We need to retrieve the private key that matches the client specs (see issue #18) fhe_api.generate_private_and_evaluation_keys(force=False) predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction) if(predictions[0][1] >= 0.5): return "Safe file with class probabilities: ", predictions else: return "Malware file with class probabilities: ", predictions if __name__ == "__main__": """ with gr.Blocks() as demo: print("Starting the FHE Model") inputs = [gr.File(label="Test File")] outputs = [ gr.Textbox(label="Evaluation Key"), gr.Textbox(label="Encodings"), gr.Textbox(label="Encrypted Quantized Encoding"), gr.Textbox(label="Encrypted Prediction"), ] run_bottn = gr.Button(label="Run") run_bottn.click( fn=process_pipeline, # Pass process_pipeline directly inputs=inputs, outputs=outputs ) demo.launch() """ print("🚀 Starting the ClairVault demo...") with gr.Blocks(css=".gradio-container { font-size: 20px; }") as demo: gr.Markdown( """
GitHub — Documentation — Community — @ClairVault