from transformers import AutoModelForTokenClassification, AutoTokenizer from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from fastapi.middleware.cors import CORSMiddleware app = FastAPI() # Setup middlewares app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Setup static files app.mount("/static", StaticFiles(directory="static"), name="static") @app.command("help") @app.get("/ping") async def ping(): return {"status": "pong"} @app.post("/predict") async def predict(input_text: str): tokenizer = AutoTokenizer.from_pretrained("your_model_name") model = AutoModelForTokenClassification.from_pretrained("your_model_name") inputs = tokenizer([input_text], return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) prediction = outputs.logits.argmax().item() return {"prediction": prediction}