# @title web interface demo import random import gradio as gr import time import numpy as np import pandas as pd import torch import faiss from sklearn.preprocessing import normalize from transformers import AutoTokenizer, AutoModelForQuestionAnswering from sentence_transformers import SentenceTransformer, util from pythainlp import Tokenizer import pickle import re from pythainlp.tokenize import sent_tokenize DEFAULT_MODEL = 'wangchanberta' DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base' MODEL_DICT = { 'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params', 'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params', } EMBEDDINGS_PATH = 'data/embeddings.pkl' DATA_PATH='data/dataset.xlsx' def load_data(path=DATA_PATH): df = pd.read_excel(path, sheet_name='Default') df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context'] print(len(df)) print('Load data done') return df def load_model(model_name=DEFAULT_MODEL): model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name]) tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name]) print('Load model done') return model, tokenizer def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL): if torch.cuda.is_available(): embedding_model = SentenceTransformer(model_name, device='cuda') else: embedding_model = SentenceTransformer(model_name) print('Load sentence embedding model done') return embedding_model def set_index(vector): if torch.cuda.is_available(): res = faiss.StandardGpuResources() index = faiss.IndexFlatL2(vector.shape[1]) gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index) gpu_index_flat.add(vector) index = gpu_index_flat else: index = faiss.IndexFlatL2(vector.shape[1]) index.add(vector) return index def get_embeddings(embedding_model, text_list): return embedding_model.encode(text_list) def prepare_sentences_vector(encoded_list): encoded_list = [i.reshape(1, -1) for i in encoded_list] encoded_list = np.vstack(encoded_list).astype('float32') encoded_list = normalize(encoded_list) return encoded_list def store_embeddings(df, embeddings): with open('embeddings.pkl', "wb") as fOut: pickle.dump({'sentences': df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL) print('Store embeddings done') def load_embeddings(file_path=EMBEDDINGS_PATH): with open(file_path, "rb") as fIn: stored_data = pickle.load(fIn) stored_sentences = stored_data['sentences'] stored_embeddings = stored_data['embeddings'] print('Load (questions) embeddings done') return stored_embeddings def model_pipeline(model, tokenizer, question, similar_context): inputs = tokenizer(question, similar_context, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) answer_start_index = outputs.start_logits.argmax() answer_end_index = outputs.end_logits.argmax() predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] Answer = tokenizer.decode(predict_answer_tokens) return Answer.replace('','@') def faiss_search(index, question_vector, k=1): distances, indices = index.search(question_vector, k) return distances,indices def predict_faiss(model, tokenizer, embedding_model, df, question, index): t = time.time() question = question.strip() question_vector = get_embeddings(embedding_model, question) question_vector = prepare_sentences_vector([question_vector]) distances,indices = faiss_search(index, question_vector) Answers = [df['Answer'][i] for i in indices[0]] _time = time.time() - t output = { "user_question": question, "answer": Answers[0], "totaltime": round(_time, 3), "score": round(distances[0][0], 4) } return output def predict(model, tokenizer, embedding_model, df, question, index): t = time.time() question = question.strip() question_vector = get_embeddings(embedding_model, question) question_vector = prepare_sentences_vector([question_vector]) distances,indices = faiss_search(index, question_vector) # Answer = model_pipeline(model, tokenizer, df['Question'][indices[0][0]], df['Context'][indices[0][0]]) Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]]) _time = time.time() - t output = { "user_question": question, "answer": Answer, "totaltime": round(_time, 3), "distance": round(distances[0][0], 4) } return Answer def predict_test(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp t = time.time() question = question.strip() question_vector = get_embeddings(embedding_model, question) question_vector = prepare_sentences_vector([question_vector]) distances,indices = faiss_search(index, question_vector) mostSimContext = df['Context'][indices[0][0]] pattern = r'(?<=\s{10}).*' matches = re.search(pattern, mostSimContext, flags=re.DOTALL) if matches: mostSimContext = matches.group(0) mostSimContext = mostSimContext.strip() mostSimContext = re.sub(r'\s+', ' ', mostSimContext) segments = sent_tokenize(mostSimContext, engine="crfcut") segments_index = set_index(get_embeddings(embedding_model,segments)) _distances,_indices = faiss_search(segments_index, question_vector) mostSimSegment = segments[_indices[0][0]] Answer = model_pipeline(model, tokenizer,question,mostSimSegment) # Find the start and end indices of mostSimSegment within mostSimContext start_index = mostSimContext.find(Answer) end_index = start_index + len(Answer) _time = time.time() - t output = { "user_question": question, "answer": df['Answer'][indices[0][0]], "totaltime": round(_time, 3), "distance": round(distances[0][0], 4), "highlight_start": start_index, "highlight_end": end_index } return output def highlight_text(text, start_index, end_index): if start_index < 0: start_index = 0 if end_index > len(text): end_index = len(text) highlighted_text = "" for i, char in enumerate(text): if i == start_index: highlighted_text += "" highlighted_text += char if i == end_index - 1: highlighted_text += "" return highlighted_text def chat_interface_before(question, history): response = predict(model, tokenizer, embedding_model, df, question, index) return response def chat_interface_after(question, history): response = predict_test(model, tokenizer, embedding_model, df, question, index) highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"]) return highlighted_answer examples=[ 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม', 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter', 'ช่องทางติดตามข่าวสารของเรา', 'ขอช่องทางติดตามข่าวสารทาง Line หน่อย', 'ช่องทางติดตามข่าวสารของเรา', 'ขอช่องทางติดตามข่าวสารทาง Line หน่อย', ] demo_before = gr.ChatInterface(fn=chat_interface_before, examples=examples) demo_after = gr.ChatInterface(fn=chat_interface_after, examples=examples) interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"]) if __name__ == "__main__": # Load your model, tokenizer, data, and index here... df = load_data() model, tokenizer = load_model('wangchanberta-hyp') embedding_model = load_embedding_model() index = set_index(prepare_sentences_vector(load_embeddings(EMBEDDINGS_PATH))) interface.launch()