import streamlit as st from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 # Function to make API call and get text completion def get_text_completion(raw_text): PAT = '9b209aadda08410caf0b6d815b57e080' USER_ID = 'openai' APP_ID = 'chat-completion' MODEL_ID = 'GPT-4' MODEL_VERSION_ID = '5d7a50b44aec4a01a9c492c5a5fcf387' channel = ClarifaiChannel.get_grpc_channel() stub = service_pb2_grpc.V2Stub(channel) metadata = (('authorization', 'Key ' + PAT),) userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) post_model_outputs_response = stub.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=userDataObject, model_id=MODEL_ID, version_id=MODEL_VERSION_ID, inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=raw_text ) ) ) ] ), metadata=metadata ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: raise Exception(f"Post model outputs failed, status: {post_model_outputs_response.status.description}") output = post_model_outputs_response.outputs[0] return output.data.text.raw # Streamlit app def main(): st.title("Text Completion App") # Get user input raw_text = st.text_area("Enter text:", "i need to know about narcotics pemishment") # Perform text completion when button is clicked if st.button("Complete Text"): completion_result = get_text_completion(raw_text) st.success("Completion:\n{}".format(completion_result)) if __name__ == "__main__": main()